ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the relation between stellar ages and vertical velocity dispersion (the age-velocity relation, or AVR) in a sample of seven simulated disc galaxies. In our simulations, the shape of the AVR for stars younger than 9 Gyr depends strongly on th e merger history at low redshift, with even 1:10 - 1:15 mergers being able to create jumps in the AVR (although these jumps might not be detectable if the errors on stellar ages are on the order of 30%). For galaxies with a quiescent history at low redshift, we find that the vertical velocity dispersion rises smoothly for ages up to 8-9 Gyr, following a power law with a slope of ~0.5, similar to what is observed in the solar neighbourhood by the Geneva-Copenhagen Survey. For these galaxies, we show that the slope of the AVR is not imprinted at birth, but is the result of subsequent heating. By contrast, in all our simulations, the oldest stars form a significantly different population, with a high velocity dispersion. These stars are usually born kinematically hot in a turbulent phase of intense mergers at high redshift, and also include some stars accreted from satellites. This maximum in velocity dispersion is strongly decreased when age errors are included, suggesting that observations can easily miss such a jump with the current accuracy of age measurements.
We study seven simulated disc galaxies, three with a quiescent merger history, and four with mergers in their last 9 Gyr of evolution. We compare their structure at z=0 by decomposing them into mono-age populations (MAPs) of stars within 500 Myr age bins. All studied galaxies undergo a phase of merging activity at high redshift, so that stars older than 9 Gyr are found in a centrally concentrated component, while younger stars are mostly found in discs. We find that most MAPs have simple exponential radial and vertical density profiles, with a scale-height that typically increases with age. Because a large range of merger histories can create populations with simple structures, this suggests that the simplicity of the structure of mono-abundance populations observed in the Milky Way by Bovy et al. (2012b,c) is not necessarily a direct indicator of a quiescent history for the Milky Way. Similarly, the anti-correlation between scale-length and scale-height does not necessarily imply a merger-free history. However, mergers produce discontinuities between thin and thick disc components, and jumps in the age-velocity relation. The absence of a structural discontinuity between thin and thick disc observed in the Milky Way would seem to be a good indicator that no merger with a mass ratio larger than 1:15-1:10 occurred in the last 9 Gyr. Mergers at higher redshift might nevertheless be necessary to produce the thickest, hottest components of the Milky Ways disc.
By means of N-body simulations we study the response of a galactic disc to a minor merger event. We find that non-self-gravitating, spiral-like features are induced in the thick disc. As we have shown in a previous work, this ringing also leaves an i mprint in velocity space (the u-v plane) in small spatial regions, such as the solar neighbourhood. As the disc relaxes after the event, clumps in the u-v plane get closer with time, allowing us to estimate the time of impact. In addition to confirming the possibility of this diagnostic, here we show that in a more realistic scenario, the in-fall trajectory of the perturber gives rise to an azimuthal dependence of the structure in phase-space. We also find that the space defined by the energy and angular momentum of stars is a better choice than velocity space, as clumps remain visible even in large local volumes. This makes their observational detection much easier since one need not be restricted to a small spatial volume. We show that information about the time of impact, the mass of the perturber, and its trajectory is stored in the kinematics of disc stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا