ترغب بنشر مسار تعليمي؟ اضغط هنا

Author impact evaluation and prediction play a key role in determining rewards, funding, and promotion. In this paper, we first introduce the background of author impact evaluation and prediction. Then, we review recent developments of author impact evaluation, including data collection, data pre-processing, data analysis, feature selection, algorithm design, and algorithm evaluation. Thirdly, we provide an in-depth literature review on author impact predictive models and common evaluation metrics. Finally, we look into the representative research issues, including author impact inflation, unified evaluation standards, academic success gene, identification of the origins of hot streaks, and higher-order academic networks analysis. This paper should help the researchers obtain a broader understanding in author impact evaluation and prediction, and provides future research directions.
Citation prediction of scholarly papers is of great significance in guiding funding allocations, recruitment decisions, and rewards. However, little is known about how citation patterns evolve over time. By exploring the inherent involution property in scholarly paper citation, we introduce the Paper Potential Index (PPI) model based on four factors: inherent quality of scholarly paper, scholarly paper impact decaying over time, early citations, and early citers impact. In addition, by analyzing factors that drive citation growth, we propose a multi-feature model for impact prediction. Experimental results demonstrate that the two models improve the accuracy in predicting scholarly paper citations. Compared to the multi-feature model, the PPI model yields superior predictive performance in terms of range-normalized RMSE. The PPI model better interprets the changes in citation, without the need to adjust parameters. Compared to the PPI model, the multi-feature model performs better prediction in terms of Mean Absolute Percentage Error and Accuracy; however, their predictive performance is more dependent on the parameter adjustment.
Globally, recommendation services have become important due to the fact that they support e-commerce applications and different research communities. Recommender systems have a large number of applications in many fields including economic, education , and scientific research. Different empirical studies have shown that recommender systems are more effective and reliable than keyword-based search engines for extracting useful knowledge from massive amounts of data. The problem of recommending similar scientific articles in scientific community is called scientific paper recommendation. Scientific paper recommendation aims to recommend new articles or classical articles that match researchers interests. It has become an attractive area of study since the number of scholarly papers increases exponentially. In this survey, we first introduce the importance and advantages of paper recommender systems. Second, we review the recommendation algorithms and methods, such as Content-Based methods, Collaborative Filtering methods, Graph-Based methods and Hybrid methods. Then, we introduce the evaluation methods of different recommender systems. Finally, we summarize open issues in the paper recommender systems, including cold start, sparsity, scalability, privacy, serendipity and unified scholarly data standards. The purpose of this survey is to provide comprehensive reviews on scholarly paper recommendation.
Quantifying the impact of scientific papers objectively is crucial for research output assessment, which subsequently affects institution and country rankings, research funding allocations, academic recruitment and national/international scientific p riorities. While most of the assessment schemes based on publication citations may potentially be manipulated through negative citations, in this study, we explore Conflict of Interest (COI) relationships and discover negative citations and subsequently weaken the associated citation strength. PANDORA (Positive And Negative COI- Distinguished Objective Rank Algorithm) has been developed, which captures the positive and negative COI, together with the positive and negative suspected COI relationships. In order to alleviate the influence caused by negative COI relationship, collaboration times, collaboration time span, citation times and citation time span are employed to determine the citing strength; while for positive COI relationship, we regard it as normal citation relationship. Furthermore, we calculate the impact of scholarly papers by PageRank and HITS algorithms, based on a credit allocation algorithm which is utilized to assess the impact of institutions fairly and objectively. Experiments are conducted on the publication dataset from American Physical Society (APS) dataset, and the results demonstrate that our method significantly outperforms the current solutions in Recommendation Intensity of list R at top-K and Spearmans rank correlation coefficient at top-K.
133 - Feng Xia , Haifeng Liu , Ivan Lee 2020
Scientific article recommender systems are playing an increasingly important role for researchers in retrieving scientific articles of interest in the coming era of big scholarly data. Most existing studies have designed unified methods for all targe t researchers and hence the same algorithms are run to generate recommendations for all researchers no matter which situations they are in. However, different researchers may have their own features and there might be corresponding methods for them resulting in better recommendations. In this paper, we propose a novel recommendation method which incorporates information on common author relations between articles (i.e., two articles with the same author(s)). The rationale underlying our method is that researchers often search articles published by the same author(s). Since not all researchers have such author-based search patterns, we present two features, which are defined based on information about pairwise articles with common author relations and frequently appeared authors, to determine target researchers for recommendation. Extensive experiments we performed on a real-world dataset demonstrate that the defined features are effective to determine relevant target researchers and the proposed method generates more accurate recommendations for relevant researchers when compared to a Baseline method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا