ترغب بنشر مسار تعليمي؟ اضغط هنا

Faraday rotation of polarised background sources is a unique probe of astrophysical magnetic fields in a diverse range of foreground objects. However, to understand the properties of the polarised sources themselves and of depolarising phenomena alon g the line of sight, we need to complement Faraday rotation data with polarisation observations over very broad bandwidths. Just as it is impossible to properly image a complex source with limited u-v coverage, we can only meaningfully understand the magneto-ionic properties of polarised sources if we have excellent coverage in $lambda^2$-space. We here propose a set of broadband polarisation surveys with the Square Kilometre Array, which will provide a singular set of scientific insights on the ways in which galaxies and their environments have evolved over cosmic time.
We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164 in 2008. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with ~0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary core and in the superluminal knot, both at >12 parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.
We locate the gamma-ray and lower frequency emission in flares of the BL Lac object AO 0235+164 at >12pc in the jet of the source from the central engine. We employ time-dependent multi-spectral-range flux and linear polarization monitoring observati ons, as well as ultra-high resolution (~0.15 milliarcsecond) imaging of the jet structure at lambda=7mm. The time coincidence in the end of 2008 of the propagation of the brightest superluminal feature detected in AO 0235+164 (Qs) with an extreme multi-spectral-range (gamma-ray to radio) outburst, and an extremely high optical and 7mm (for Qs) polarization degree provides strong evidence supporting that all these events are related. This is confirmed at high significance by probability arguments and Monte-Carlo simulations. These simulations show the unambiguous correlation of the gamma-ray flaring state in the end of 2008 with those in the optical, millimeter, and radio regime, as well as the connection of a prominent X-ray flare in October 2008, and of a series of optical linear polarization peaks, with the set of events in the end of 2008. The observations are interpreted as the propagation of an extended moving perturbation through a re-collimation structure at the end of the jets acceleration and collimation zone.
We introduce MAPCAT, a long-term observing program for Monitoring of AGN with Polarimetry at the Calar Alto Telescopes. Multi-spectral-range studies are critical to understand some of the most relevant current problems of high energy astrophysics of blazars such as their high energy emission mechanisms and the location of their gamma-ray emission region through event associations across the spectrum. Adding multi-spectral-range polarimetry allows for even more reliable identification of polarized flares across the spectrum in these kind of objects, as well as for more accurate modeling of their magnetic field. As part of a major international effort to study the long term multi-spectral range polarimetric behavior of blazars, MAPCAT uses -since mid 2007- CAFOS on the 2.2m Telescope at the Calar Alto Observatory (Almeria, Spain) to obtain monthly optical (R-band) photo-polarimetric measurements of a sample of 34 of the brightest gamma-ray, optical, and radio-millimeter blazars accessible from the northern hemisphere.
We report on the location of the gamma-ray emission region in flares of the BL Lacertae object OJ287 at >14pc from the central supermassive black hole. We employ data from multi-spectral range (total flux and linear polarization) monitoring programs combined with sequences of ultra-high-resolution 7mm VLBA images. The correlation between the brightest gamma-ray and mm flares is found to be statistically significant. The two gamma-ray peaks, detected by Fermi-LAT, that we report here happened at the rising phase of two exceptionally bright mm flares accompanied by sharp linear polarization peaks. The VLBA images show that these mm flares in total flux and polarization degree occurred in a jet region at >14pc from the innermost jet region. The time coincidence of the brighter gamma-ray flare and its corresponding mm linear polarization peak evidences that both the gamma-ray and mm outbursts occur >14pc from the central black hole. We find two sharp optical flares occurring at the peak times of the two reported gamma-ray flares. This is interpreted as the gamma-ray flares being produced by synchrotron self-Compton scattering of optical photons from the flares triggered by the interaction of moving knots with a stationary conical shock in the jet.
We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with 0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary core and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا