ترغب بنشر مسار تعليمي؟ اضغط هنا

It is largely believed that complex cognitive phenomena require the perfect orchestrated collaboration of many neurons. However, this is not what converging experimental evidence suggests. Single neurons, the so-called concept cells, may be responsib le for complex tasks performed by an individual. Here, starting from a few first principles, we layout physical foundations showing that concept cells are not only possible but highly likely, given that neurons work in a high dimensional space.
This supplement illustrates application of adaptive observer design from (Tyukin et al, 2013) for systems which are not uniquely identifiable. It also provides an example of adaptive observer design for a magnetic bearings benchmark system (Lin, Knospe, 2000).
120 - Erik Steur , Ivan Tyukin , 2009
We discuss synchronization in networks of neuronal oscillators which are interconnected via diffusive coupling, i.e. linearly coupled via gap junctions. In particular, we present sufficient conditions for synchronization in these networks using the t heory of semi-passive and passive systems. We show that the conductance-based neuronal models of Hodgkin-Huxley, Morris-Lecar, and the popular reduced models of FitzHugh-Nagumo and Hindmarsh-Rose all satisfy a semi-passivity property, i.e. that is the state trajectories of such a model remain oscillatory but bounded provided that the supplied (electrical) energy is bounded. As a result, for a wide range of coupling configurations, networks of these oscillators are guaranteed to possess ultimately bounded solutions. Moreover, we demonstrate that when the coupling is strong enough the oscillators become synchronized. Our theoretical conclusions are confirmed by computer simulations with coupled HR and ML oscillators. Finally we discuss possible instabilities in networks of oscillators induced by the diffusive coupling.
We consider the problem of asymptotic convergence to invariant sets in interconnected nonlinear dynamic systems. Standard approaches often require that the invariant sets be uniformly attracting. e.g. stable in the Lyapunov sense. This, however, is n either a necessary requirement, nor is it always useful. Systems may, for instance, be inherently unstable (e.g. intermittent, itinerant, meta-stable) or the problem statement may include requirements that cannot be satisfied with stable solutions. This is often the case in general optimization problems and in nonlinear parameter identification or adaptation. Conventional techniques for these cases rely either on detailed knowledge of the systems vector-fields or require boundeness of its states. The presently proposed method relies only on estimates of the input-output maps and steady-state characteristics. The method requires the possibility of representing the system as an interconnection of a stable, contracting, and an unstable, exploratory part. We illustrate with examples how the method can be applied to problems of analyzing the asymptotic behavior of locally unstable systems as well as to problems of parameter identification and adaptation in the presence of nonlinear parametrizations. The relation of our results to conventional small-gain theorems is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا