ترغب بنشر مسار تعليمي؟ اضغط هنا

We present 26 point-sources discovered with Chandra within 200 (~20kpc) of the center of the barred supergiant galaxy NGC 1365. The majority of these sources are high-mass X-ray binaries, containing a neutron star or a black hole accreting from a lum inous companion at a sub-Eddington rate. Using repeat Chandra and XMM-Newton as well as optical observations, we discuss in detail the natures of two highly-variable ultraluminous X-ray sources (ULXs): NGC 1365 X1, one of the most luminous ULXs known since the ROSAT era, which is X-ray variable by a factor of 30, and NGC 1365 X2, a newly discovered transient ULX, variable by a factor of >90. Their maximum X-ray luminosities (3-5 x 10^40 erg/s, measured with Chandra) and multiwavelength properties suggest the presence of more exotic objects and accretion modes: accretion onto intermediate mass black holes (IMBHs) and beamed/super-Eddington accretion onto solar-mass compact remnants. We argue that these two sources have black-hole masses higher than those of the typical primaries found in X-ray binaries in our Galaxy (which have masses of <20 Msolar), with a likely black-hole mass of 40-60 Msolar in the case of NGC 1365 X1 with a beamed/super-Eddington accretion mode, and a possible IMBH in the case of NGC 1365 X2 with M=80-500Msolar.
We study the 0.5-10keV emission of a sample of five of the broadest double-peaked Balmer-line emitters with Chandra. The Balmer lines of these objects originate close (within a few hundred gravitational radii) to the central black holes of the Active Galactic Nuclei (AGNs), and their double-peaked profiles suggest an origin in the AGN accretion disk. We find that four of the five targets can be modeled by simple power-law continua with photon indices (1.6-1.8) typical of similar luminosity AGNs. One object, SDSS J0132-0952, shows evidence of ionized intrinsic absorption. The most-luminous SDSS double-peaked emitter, SDSS J2125-0813, has either an unusual flat spectrum (~1) or is also highly absorbed. It is the only double-peaked emitter for which no external illumination is necessary to account for the Balmer line emission. The strength of the Balmer-line emission in the remaining four objects suggests that the total line flux likely exceeds the viscous energy that can be extracted locally from the accretion disk and external illumination is necessary. All five double-peaked emitters have unusually strong X-ray emission relative to their UV/optical emission, which is the likely source of the external illumination necessary for the production of the observed strong broad lines. On average about 30% of their bolometric luminosities are emitted between 0.5-10keV. The spectral energy distributions of the five double-peaked emitters show the big blue bumps characteristic of radiatively efficient accretion flows. The Balmer line profiles, as well as the optical and X-ray fluxes of the double-peaked emitters, are highly variable on timescales of months to years in the AGN rest frame.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا