ترغب بنشر مسار تعليمي؟ اضغط هنا

Many quantum mechanical experiments can be viewed as multi-round interactive protocols between known quantum circuits and an unknown quantum process. Fully quantum coherent access to the unknown process is known to provide an advantage in many discri mination tasks compared to when only incoherent access is permitted, but it is unclear if this advantage persists when the process is noisy. Here, we show that a quantum advantage can be maintained when distinguishing between two noisy single qubit rotation channels. Numerical and analytical calculations reveal a distinct transition between optimal performance by fully coherent and fully incoherent protocols as a function of noise strength. Moreover, the size of the region of coherent quantum advantage shrinks inverse polynomially in the number of channel uses, and in an intermediate regime an improved strategy is a hybrid of fully-coherent and fully-incoherent subroutines. The fully coherent protocol is based on quantum signal processing, suggesting a generalizable algorithmic framework for the study of quantum advantage in the presence of realistic noise.
The problem of discriminating between many quantum channels with certainty is analyzed under the assumption of prior knowledge of algebraic relations among possible channels. It is shown, by explicit construction of a novel family of quantum algorith ms, that when the set of possible channels faithfully represents a finite subgroup of SU(2) (e.g., $C_n, D_{2n}, A_4, S_4, A_5$) the recently-developed techniques of quantum signal processing can be modified to constitute subroutines for quantum hypothesis testing. These algorithms, for group quantum hypothesis testing (G-QHT), intuitively encode discrete properties of the channel set in SU(2) and improve query complexity at least quadratically in $n$, the size of the channel set and group, compared to naive repetition of binary hypothesis testing. Intriguingly, performance is completely defined by explicit group homomorphisms; these in turn inform simple constraints on polynomials embedded in unitary matrices. These constructions demonstrate a flexible technique for mapping questions in quantum inference to the well-understood subfields of functional approximation and discrete algebra. Extensions to larger groups and noisy settings are discussed, as well as paths by which improved protocols for quantum hypothesis testing against structured channel sets have application in the transmission of reference frames, proofs of security in quantum cryptography, and algorithms for property testing.
Quantum simulation uses a well-known quantum system to predict the behavior of another quantum system. Certain limitations in this technique arise, however, when applied to specific problems, as we demonstrate with a theoretical and experimental stud y of an algorithm to find the low-lying spectrum of a Hamiltonian. While the number of elementary quantum gates does scale polynomially with the size of the system, it increases inversely to the desired error bound $epsilon$. Making such simulations robust to decoherence using fault-tolerance constructs requires an additional factor of $1/ epsilon$ gates. These constraints are illustrated by using a three qubit nuclear magnetic resonance system to simulate a pairing Hamiltonian, following the algorithm proposed by Wu, Byrd, and Lidar.
Fifty years of developments in nuclear magnetic resonance (NMR) have resulted in an unrivaled degree of control of the dynamics of coupled two-level quantum systems. This coherent control of nuclear spin dynamics has recently been taken to a new leve l, motivated by the interest in quantum information processing. NMR has been the workhorse for the experimental implementation of quantum protocols, allowing exquisite control of systems up to seven qubits in size. Here, we survey and summarize a broad variety of pulse control and tomographic techniques which have been developed for and used in NMR quantum computation. Many of these will be useful in other quantum systems now being considered for implementation of quantum information processing tasks.
251 - Isaac L. Chuang 1998
Nuclear magnetic resonance techniques are used to realize a quantum algorithm experimentally. The algorithm allows a simple NMR quantum computer to determine global properties of an unknown function requiring fewer function ``calls than is possible using a classical computer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا