ترغب بنشر مسار تعليمي؟ اضغط هنا

It is a well known result that any formulation of unimodular gravity is classically equivalent to General Relativity (GR), however a debate exists in the literature about this equivalence at the quantum level. In this work, we investigate the UV quan tum structure of a diffeomorphism invariant formulation of unimodular gravity using functional renormalisation group methods in a Wilsonian context. We show that the effective action of the unimodular theory acquires essentially the same form with that of GR in the UV, as well as that both theories share similar UV completions within the framework of the asymptotic safety scenario for quantum gravity. Furthermore, we find that in this context the unimodular theory can appear to be non--predictive due to an increasing number of relevant couplings at high energies, and explain how this unwanted feature is in the end avoided.
We discuss unimodular gravity at a classical level, and in terms of its extension into the UV through an appropriate path integral representation. Classically, unimodular gravity is simply a gauge fixed version of General Relativity (GR), and as such it yields identical dynamics and physical predictions. We clarify this and explain why there is no sense in which it can bring a new perspective to the cosmological constant problem. The quantum equivalence between unimodular gravity and GR is more of a subtle question, but we present an argument that suggests one can always maintain the equivalence up to arbitrarily high momenta. As a corollary to this, we argue that whenever inequivalence is seen at the quantum level, that just means we have defined two different quantum theories that happen to share a classical limit.
We make precise the heretofore ambiguous statement that anisotropic stress is a sign of a modification of gravity. We show that in cosmological solutions of very general classes of models extending gravity --- all scalar-tensor theories (Horndeski), Einstein-Aether models and bimetric massive gravity --- a direct correspondence exists between perfect fluids apparently carrying anisotropic stress and a modification in the propagation of gravitational waves. Since the anisotropic stress can be measured in a model-independent manner, a comparison of the behavior of gravitational waves from cosmological sources with large-scale-structure formation could in principle lead to new constraints on the theory of gravity.
We explore the cosmological dynamics of an effective f(R) model constructed from a renormalisation group (RG) improvement of the Einstein--Hilbert action, using the non-perturbative beta functions of the exact renormalisation group equation. The resu lting f(R) model has some remarkable properties. It naturally exhibits an unstable de Sitter era in the ultraviolet (UV), dynamically connected to a stable de Sitter era in the IR, via a period of radiation and matter domination, thereby describing a non-singular universe. We find that the UV de Sitter point is one of an infinite set, which make the UV RG fixed point inaccessible to classical cosmological evolution. In the vicinity of the fixed point, the model behaves as R^2 gravity, while it correctly recovers General Relativity at solar system scales. In this simplified model, the fluctuations are too large to be the observed ones, and more ingredients in the action are needed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا