ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the phase structure of a 4D complex scalar field theory with a potential V(Phi) = | Lambda^3 / Phi - Lambda Phi |^2 at zero and at finite temperature. The model is analyzed by mean field and Monte Carlo methods. At zero temperature the theor y falls in the universality class of the 4D Ising model when varying Lambda. The situation is less clear-cut for variations w.r.t. Lambda at large temperatures and variations w.r.t. temperature at a given value of Lambda. We observe temperature independence of the mass of the first excitation.
Lattice QCD at finite chemical potential is difficult due to the sign problem. We use stochastic quantization and complex Langevin dynamics to study this issue. First results for QCD in the hopping expansion are encouraging. U(1) and SU(3) one link m odels are used to gain further insight into why the method appears to be successful.
A nonperturbative lattice study of QCD at finite chemical potential is complicated due to the complex fermion determinant and the sign problem. Here we apply the method of stochastic quantization and complex Langevin dynamics to this problem. We pres ent results for U(1) and SU(3) one link models and QCD at finite chemical potential using the hopping expansion. The phase of the determinant is studied in detail. Even in the region where the sign problem is severe, we find excellent agreement between the Langevin results and exact expressions, if available. We give a partial understanding of this in terms of classical flow diagrams and eigenvalues of the Fokker-Planck equation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا