ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - Matthew F. Pusey 2015
If a quantum system is prepared and later post-selected in certain states, paradoxical predictions for intermediate measurements can be obtained. This is the case both when the intermediate measurement is strong, i.e. a projective measurement with Lu ders-von Neumann update rule, or with weak measurements where they show up in anomalous weak values. Leifer and Spekkens [quant-ph/0412178] identified a striking class of such paradoxes, known as logical pre- and post-selection paradoxes, and showed that they are indirectly connected with contextuality. By analysing the measurement-disturbance required in models of these phenomena, we find that the strong measurement version of logical pre- and post-selection paradoxes actually constitute a direct manifestation of quantum contextuality. The proof hinges on under-appreciated features of the paradoxes. In particular, we show by example that it is not possible to prove contextuality without Luders-von Neumann updates for the intermediate measurements, nonorthogonal pre- and post-selection, and 0/1 probabilities for the intermediate measurements. Since one of us has recently shown that anomalous weak values are also a direct manifestation of contextuality [arXiv:1409.1535], we now know that this is true for both realizations of logical pre- and post-selection paradoxes.
We propose a model for isotropization and corresponding thermalization in a nucleon system created in the collision of two nuclei. The model is based on the assumption: during the fireball evolution, two-particle elastic and inelastic collisions give rise to the randomization of the nucleon-momentum transfer which is driven by a proper distribution. As a first approximation, we assume a homogeneous distribution where the values of the momentum transfer is bounded from above. These features have been shown to result in a smearing of the particle momenta about their initial values and, as a consequence, in their partial isotropization and thermalization. The nonequilibrium single-particle distribution function and single-particle spectrum which carry a memory about initial state of nuclei have been obtained.
The partition function of nonequilibrium distribution which we recently obtained [arXiv:0802.0259] in the framework of the maximum isotropization model (MIM) is exploited to extract physical information from experimental data on the proton rapidity a nd transverse mass distributions. We propose to partition all interacting nucleons into ensembles in accordance with the number of collisions. We analyze experimental rapidity distribution and get the number of particles in every collision ensemble. We argue that even a large number of effective nucleon collisions cannot lead to thermalization of nucleon system; the thermal source which describes the proton distribution in central rapidity region arises as a result of fast thermalization of the parton degrees of freedom. The obtained number of nucleons which corresponds to the thermal contribution is treated as a ``nucleon power of the created quark-gluon plasma in a particular experiment.
We consider two-particle correlations, which appear in relativistic nuclear collisions due to the quantum statistics of identical particles, in the frame of two formalisms: wave-function and current. The first one is based on solution of the Cauchy p roblem, whereas the second one is a so-called current parametrization of the source of secondary particles. We argue that these two parameterizations of the source coincide when the wave function at freeze-out times is put in a specific correspondence with a current. Then, the single-particle Wigner density evaluated in both approaches gives the same result.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا