ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed density functional theory calculation and tight binging analysis in order to investigate the mechanism for the giant Rashba-type spin splitting (RSS) observed in Bi/Ag(111). We find that local orbital angular momentum induces moment um and spin dependent charge distribution which results in spin-dependent hopping. We show that the spin-dependent interatomic-hopping in Bi/Ag(111) works as a strong effective field and induces the giant RSS, indicating that the giant RSS is driven by hopping, not by a uniform electric field. The effective field from the hopping energy difference amounts to be ~18 V/{AA}. This new perspective on the RSS gives us a hint for the giant RSS mechanism in general and should provide a strategy for designing new RSS materials by controlling spin-dependence of hopping energy between the neighboring atomic layers.
Cutting-edge research in the band engineering of nanowires at the ultimate fine scale is related to the minimum scale of a nanowire-based device. The fundamental issue at the subnanometre scale is whether angle-resolved photoemission spectroscopy (AR PES) can be used to directly measure the momentum-resolved electronic structure of a single wire because of the difficulty associated with assembling single wire into an ordered array for such measurements. Here, we demonstrated that the one-dimensional (1D) confinement of electrons, which are transferred from external dopants, within a single subnanometre-scale wire (subnanowire) could be directly measured using ARPES. Convincing evidence of 1D electron confinement was obtained using two different gold subnanowires with characteristic single metallic bands that were alternately and spontaneously ordered on a stepped silicon template, Si(553). Noble metal atoms were adsorbed at room temperature onto the gold subnanowires while maintaining the overall structure of the wires. Only one type of gold subnanowires could be controlled using external noble metal dopants without transforming the metallic band of the other type of gold subnanowires. This result was confirmed by scanning tunnelling microscopy experiments and first-principles calculations. The selective control clearly showed that externally doped electrons could be confined within a single gold subnanowire. This experimental evidence was used to further investigate the effects of the disorder induced by external dopants on a single subnanowire using ARPES.
For graphene to be used in semiconductor applications, a wide energy gap of at least 0.5 eV at the Dirac energy must be opened without the introduction of atomic defects. However, such a wide energy gap has not been realized in graphene, except in th e cases of narrow, chemically terminated graphene nanostructures with inevitable edge defects. Here, we demonstrated that a wide energy gap of 0.74 eV, which is larger than that of germanium, could be opened in uniform monolayer graphene without the introduction of atomic defects into graphene. The wide energy gap was opened through the adsorption of self-assembled twisted sodium nanostrips. Furthermore, the energy gap was reversibly controllable through the alternate adsorption of sodium and oxygen. The opening of such a wide energy gap with minimal degradation of mobility could improve the applicability of graphene in semiconductor devices, which would result in a major advancement in graphene technology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا