ترغب بنشر مسار تعليمي؟ اضغط هنا

The required precision to perform quantum simulations beyond the capabilities of classical computers imposes major experimental and theoretical challenges. Here, we develop a characterization technique to benchmark the implementation precision of a s pecific quantum simulation task. We infer all parameters of the bosonic Hamiltonian that governs the dynamics of excitations in a two-dimensional grid of nearest-neighbour coupled superconducting qubits. We devise a robust algorithm for identification of Hamiltonian parameters from measured times series of the expectation values of single-mode canonical coordinates. Using super-resolution and denoising methods, we first extract eigenfrequencies of the governing Hamiltonian from the complex time domain measurement; next, we recover the eigenvectors of the Hamiltonian via constrained manifold optimization over the orthogonal group. For five and six coupled qubits, we identify Hamiltonian parameters with sub-MHz precision and construct a spatial implementation error map for a grid of 27 qubits. Our approach enables us to distinguish and quantify the effects of state preparation and measurement errors and show that they are the dominant sources of errors in the implementation. Our results quantify the implementation accuracy of analog dynamics and introduce a diagnostic toolkit for understanding, calibrating, and improving analog quantum processors.
A new family of operators, coined hierarchical measurement operators, is introduced and discussed within the well-known hierarchical sparse recovery framework. Such operator is a composition of block and mixing operations and notably contains the Kro necker product as a special case. Results on their hierarchical restricted isometry property (HiRIP) are derived, generalizing prior work on recovery of hierarchically sparse signals from Kronecker-structured linear measurements. Specifically, these results show that, very surprisingly, sparsity properties of the block and mixing part can be traded against each other. The measurement structure is well-motivated by a massive random access channel design in communication engineering. Numerical evaluation of user detection rates demonstrate the huge benefit of the theoretical framework.
The study of generic properties of quantum states has led to an abundance of insightful results. A meaningful set of states that can be efficiently prepared in experiments are ground states of gapped local Hamiltonians, which are well approximated by matrix product states. In this work, we introduce a picture of generic states within the trivial phase of matter with respect to their non-equilibrium and entropic properties: We do so by rigorously exploring non-translation-invariant matrix product states drawn from a local i.i.d. Haar-measure. We arrive at these results by exploiting techniques for computing moments of random unitary matrices and by exploiting a mapping to partition functions of classical statistical models, a method that has lead to valuable insights on local random quantum circuits. Specifically, we prove that such disordered random matrix product states equilibrate exponentially well with overwhelming probability under the time evolution of Hamiltonians featuring a non-degenerate spectrum. Moreover, we prove two results about the entanglement Renyi entropy: The entropy with respect to sufficiently disconnected subsystems is generically extensive in the system-size, and for small connected systems the entropy is almost maximal for sufficiently large bond dimensions.
The term randomized benchmarking refers to a collection of protocols that in the past decade have become the gold standard for characterizing quantum gates. These protocols aim at efficiently estimating the quality of a set of quantum gates in a way that is resistant to state preparation and measurement errors, and over the years ma
Extracting tomographic information about quantum states is a crucial task in the quest towards devising high-precision quantum devices. Current schemes typically require measurement devices for tomography that are a priori calibrated to a high precis ion. Ironically, the accuracy of the measurement calibration is fundamentally limited by the accuracy of state preparation, establishing a vicious cycle. Here, we prove that this cycle can be broken and the fundamental dependence on the measurement devices significantly relaxed. We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind tomography scheme with a classically efficient post-processing algorithm. We further improve the efficiency of our scheme by making use of the sparse structure of the calibrations. This is achieved by relaxing the blind quantum tomography problem to the task of de-mixing a sparse sum of low-rank quantum states. Building on techniques from model-based compressed sensing, we prove that the proposed algorithm recovers a low-rank quantum state and the calibration provided that the measurement model exhibits a restricted isometry property. For generic measurements, we show that our algorithm requires a close-to-optimal number measurement settings for solving the blind tomography task. Complementing these conceptual and mathematical insights, we numerically demonstrate that blind quantum tomography is possible by exploiting low-rank assumptions in a practical setting inspired by an implementation of trapped ions using constrained alternating optimization.
Recently, a new class of so-called emph{hierarchical thresholding algorithms} was introduced to optimally exploit the sparsity structure in joint user activity and channel detection problems. In this paper, we take a closer look at the user detection performance of such algorithms under noise and relate its performance to the classical block correlation detector with orthogonal signatures. More specifically, we derive a lower bound for the diversity order which, under suitable choice of the signatures, equals that of the block correlation detector. Surprisingly, in specific parameter settings non-orthogonal pilots, i.e. pilots where (cyclically) shift
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measu rement) matrix corresponding to this setup, application of standard CS algorithms and analysis methodology does not apply. By recognizing that the channel possesses a special structure, termed hierarchical sparsity, we propose an efficient algorithm that explicitly takes into account this property. In addition, by extending the standard CS analysis methodology to hierarchical sparse vectors, we provide a rigorous analysis of the algorithm performance in terms of estimation error as well as number of pilot subcarriers required to achieve it. Small training overhead, in turn, means higher number of supported users in a cell and potentially improved pilot decontamination. We believe, that this is the first paper that draws a rigorous connection between the hierarchical framework and Kronecker measurements. Numerical results verify the advantage of employing the proposed approach in this setting instead of standard CS algorithms.
Characterising quantum processes is a key task in and constitutes a challenge for the development of quantum technologies, especially at the noisy intermediate scale of todays devices. One method for characterising processes is randomised benchmarkin g, which is robust against state preparation and measurement (SPAM) errors, and can be used to benchmark Clifford gates. A complementing approach asks for full tomographic knowledge. Compressed sensing techniques achieve full tomography of quantum channels essentially at optimal resource efficiency. So far, guarantees for compressed sensing protocols rely on unstructured random measurements and can not be applied to the data acquired from randomised benchmarking experiments. It has been an open question whether or not the favourable features of both worlds can be combined. In this work, we give a positive answer to this question. For the important case of characterising multi-qubit unitary gates, we provide a rigorously guaranteed and practical reconstruction method that works with an essentially optimal number of average gate fidelities measured respect to random Clifford unitaries. Moreover, for general unital quantum channels we provide an explicit expansion into a unitary 2-design, allowing for a practical and guaranteed reconstruction also in that case. As a side result, we obtain a new statistical interpretation of the unitarity -- a figure of merit that characterises the coherence of a process. In our proofs we exploit recent representation theoretic insights on the Clifford group, develop a version of Collins calculus with Weingarten functions for integration over the Clifford group, and combine this with proof techniques from compressed sensing.
The Internet of Things and specifically the Tactile Internet give rise to significant challenges for notions of security. In this work, we introduce a novel concept for secure massive access. The core of our approach is a fast and low-complexity blin d deconvolution algorithm exploring a bi-linear and hierarchical compressed sensing framework. We show that blind deconvolution has two appealing features: 1) There is no need to coordinate the pilot signals, so even in the case of collisions in user activity, the information messages can be resolved. 2) Since all the individual channels are recovered in parallel, and by assumed channel reciprocity, the measured channel entropy serves as a common secret and is used as an encryption key for each user. We will outline the basic concepts underlying the approach and describe the blind deconvolution algorithm in detail. Eventually, simulations demonstrate the ability of the algorithm to recover both channel and message. They also exhibit the inherent trade-offs of the scheme between economical recovery and secret capacity.
We propose and analyze a solution to the problem of recovering a block sparse signal with sparse blocks from linear measurements. Such problems naturally emerge inter alia in the context of mobile communication, in order to meet the scalability and l ow complexity requirements of massive antenna systems and massive machine-type communication. We introduce a new variant of the Hard Thresholding Pursuit (HTP) algorithm referred to as HiHTP. We provide both a proof of convergence and a recovery guarantee for noisy Gaussian measurements that exhibit an improved asymptotic scaling in terms of the sampling complexity in comparison with the usual HTP algorithm. Furthermore, hierarchically sparse signals and Kronecker product structured measurements naturally arise together in a variety of applications. We establish the efficient reconstruction of hierarchically sparse signals from Kronecker product measurements using the HiHTP algorithm. Additionally, we provide analytical results that connect our recovery conditions to generalized coherence measures. Again, our recovery results exhibit substantial improvement in the asymptotic sampling complexity scaling over the standard setting. Finally, we validate in numerical experiments that for hierarchically sparse signals, HiHTP performs significantly better compared to HTP.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا