ترغب بنشر مسار تعليمي؟ اضغط هنا

Entity-linking is a natural-language-processing task that consists in identifying the entities mentioned in a piece of text, linking each to an appropriate item in some knowledge base; when the knowledge base is Wikipedia, the problem comes to be kno wn as wikification (in this case, items are wikipedia articles). One instance of entity-linking can be formalized as an optimization problem on the underlying concept graph, where the quantity to be optimized is the average distance between chosen items. Inspired by this application, we define a new graph problem which is a natural variant of the Maximum Capacity Representative Set. We prove that our problem is NP-hard for general graphs; nonetheless, under some restrictive assumptions, it turns out to be solvable in linear time. For the general case, we propose two heuristics: one tries to enforce the above assumptions and another one is based on the notion of hitting distance; we show experimentally how these approaches perform with respect to some baselines on a real-world dataset.
123 - Tzu-chun Chen 2014
Global session types prevent participants from waiting for never coming messages. Some interactions take place just for the purpose of informing receivers that some message will never arrive or the session is terminated. By decomposing a big global t ype into several light global types, one can avoid such kind of redundant interactions. Lightening global types gives us cleaner global types, which keep all necessary communications. This work proposes a framework which allows to easily decompose global types into light global types, preserving the interaction sequences of the original ones but for redundant interactions.
168 - Giulio Caravagna 2013
The preliminary analyses on a multiscale model of intestinal crypt dynamics are here presented. The model combines a morphological model, based on the Cellular Potts Model (CPM), and a gene regulatory network model, based on Noisy Random Boolean Netw orks (NRBNs). Simulations suggest that the stochastic differentiation process is itself sufficient to ensure the general homeostasis in the asymptotic states, as proven by several measures.
A quite flourishing research thread in the recent literature on component-based systems is concerned with the algebraic properties of different classes of connectors. In a recent paper, an algebra of stateless connectors was presented that consists o f five kinds of basic connectors, namely symmetry, synchronization, mutual exclusion, hiding and inaction, plus their duals, and it was shown how they can be freely composed in series and in parallel to model sophisticated glues. In this paper we explore the expressiveness of stateful connectors obtained by adding one-place buffers or unbounded buffers to the stateless connectors. The main results are: i) we show how different classes of connectors exactly correspond to suitable classes of Petri nets equipped with compositional interfaces, called nets with boundaries; ii) we show that the difference between strong and weak semantics in stateful connectors is reflected in the semantics of nets with boundaries by moving from the classic step semantics (strong case) to a novel banking semantics (weak case), where a step can be executed by taking some debit tokens to be given back during the same step; iii) we show that the corresponding bisimilarities are congruences (w.r.t. composition of connectors in series and in parallel); iv) we show that suitable monoidality laws, like those arising when representing stateful connectors in the tile model, can nicely capture concurrency (in the sense of step semantics) aspects; and v) as a side result, we provide a basic algebra, with a finite set of symbols, out of which we can compose all P/T nets with boundaries, fulfilling a long standing quest.
101 - Giulio Caravagna 2012
Tumors constitute a wide family of diseases kinetically characterized by the co-presence of multiple spatio-temporal scales. So, tumor cells ecologically interplay with other kind of cells, e.g. endothelial cells or immune system effectors, producing and exchanging various chemical signals. As such, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model agents at low concentrations, and mean-field equations model chemical signals. In previous works we proposed a hybrid version of the well-known Panetta-Kirschner mean-field model of tumor cells, effector cells and Interleukin-2. Our hybrid model suggested -at variance of the inferences from its original formulation- that immune surveillance, i.e. tumor elimination by the immune system, may occur through a sort of side-effect of large stochastic oscillations. However, that model did not account that, due to both chemical transportation and cellular differentiation/division, the tumor-induced recruitment of immune effectors is not instantaneous but, instead, it exhibits a lag period. To capture this, we here integrate a mean-field equation for Interleukins-2 with a bi-dimensional delayed stochastic process describing such delayed interplay. An algorithm to realize trajectories of the underlying stochastic process is obtained by coupling the Piecewise Deterministic Markov process (for the hybrid part) with a Generalized Semi-Markovian clock structure (to account for delays). We (i) relate tumor mass growth with delays via simulations and via parametric sensitivity analysis techniques, (ii) we quantitatively determine probabilistic eradication times, and (iii) we prove, in the oscillatory regime, the existence of a heuristic stochastic bifurcation resulting in delay-induced tumor eradication, which is neither predicted by the mean-field nor by the hybrid non-delayed models.
55 - Marco Bernardo 2011
Labeled transition systems are typically used to represent the behavior of nondeterministic processes, with labeled transitions defining a one-step state to-state reachability relation. This model has been recently made more general by modifying the transition relation in such a way that it associates with any source state and transition label a reachability distribution, i.e., a function mapping each possible target state to a value of some domain that expresses the degree of one-step reachability of that target state. In this extended abstract, we show how the resulting model, called ULTraS from Uniform Labeled Transition System, can be naturally used to give semantics to a fully nondeterministic, a fully probabilistic, and a fully stochastic variant of a CSP-like process language.
The intersection type assignment system has been designed directly as deductive system for assigning formulae of the implicative and conjunctive fragment of the intuitionistic logic to terms of lambda-calculus. But its relation with the logic is not standard. Between all the logics that have been proposed as its foundation, we consider ISL, which gives a logical interpretation of the intersection by splitting the intuitionistic conjunction into two connectives, with a local and global behaviour respectively, being the intersection the local one. We think ISL is a logic interesting by itself, and in order to support this claim we give a sequent calculus formulation of it, and we prove that it enjoys the cut elimination property.
Delays in biological systems may be used to model events for which the underlying dynamics cannot be precisely observed, or to provide abstraction of some behavior of the system resulting more compact models. In this paper we enrich the stochastic pr ocess algebra Bio-PEPA, with the possibility of assigning delays to actions, yielding a new non-Markovian process algebra: Bio-PEPAd. This is a conservative extension meaning that the original syntax of Bio-PEPA is retained and the delay specification which can now be associated with actions may be added to existing Bio-PEPA models. The semantics of the firing of the actions with delays is the delay-as-duration approach, earlier presented in papers on the stochastic simulation of biological systems with delays. These semantics of the algebra are given in the Starting-Terminating style, meaning that the state and the completion of an action are observed as two separate events, as required by delays. Furthermore we outline how to perform stochastic simulation of Bio-PEPAd systems and how to automatically translate a Bio-PEPAd system into a set of Delay Differential Equations, the deterministic framework for modeling of biological systems with delays. We end the paper with two example models of biological systems with delays to illustrate the approach.
We investigate how contracts can be used to regulate the interaction between processes. To do that, we study a variant of the concurrent constraints calculus presented in [1], featuring primitives for multi-party synchronization via contracts. We pro ceed in two directions. First, we exploit our primitives to model some contract-based interactions. Then, we discuss how several models for concurrency can be expressed through our primitives. In particular, we encode the pi-calculus and graph rewriting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا