ترغب بنشر مسار تعليمي؟ اضغط هنا

A fraction of multiple planet candidate systems discovered from transits by the Kepler mission contain pairs of planet candidates that are in orbital resonance or are spaced slightly too far apart to be in resonance. We focus here on the four planet system, KOI 730, that has planet periods satisfying the ratios 8:6:4:3. By numerically integrating four planets initially in this resonant configuration in proximity to an initially exterior cold planetesimal disk, we find that of the order of a Mars mass of planet-orbit-crossing planetesimals is sufficient to pull this system out of resonance. Approximately one Earth mass of planet-orbit-crossing planetesimals increases the interplanetary spacings sufficiently to resemble the multiple planet candidate Kepler systems that lie just outside of resonance. This suggests that the closely spaced multiple planet Kepler systems, host only low mass debris disks or their debris disks have been extremely stable. We find that the planetary inclinations increase as a function of the mass in planetesimals that have crossed the orbits of the planets. If systems are left at zero inclination and in resonant chains after depletion of the gas disk then we would expect a correlation between distance to resonance and mutual planetary inclinations. This may make it possible to differentiate between dynamical mechanisms that account for the fraction of multiple planet systems just outside of resonance.
By logging encounters between planetesimals and planets we compute the distribution of encounters in a numerically integrated two planet system that is migrating due to interactions with an exterior planetesimal belt. Capture of an irregular satellit e in orbit about a planet through an exchange reaction with a binary planetesimal is only likely when the binary planetesimal undergoes a slow and close encounter with the planet. In our simulations we find that close and slow encounters between planetesimals and a planet primarily occur with the outermost and not innermost planet. Taking care to consider where a planet orbit crossing binary planetesimal would first be tidally disrupted, we estimate the probability of both tidal disruption and irregular satellite capture. We estimate that the probability that the secondary of a binary planetesimal is captured and becomes an irregular satellite about a Neptune mass outer planet is about 1/100 for binaries with masses and separations similar to transneptunian planetesimal binaries. If young exoplanetary debris disks host a binary planetesimal population then outwards migrating outer planets should host captured irregular satellite populations. We discuss interpretation of emission associated with the exoplanet Fomalhaut b in terms of collisional evolution of a captured irregular satellite population that is replenished due to planetary migration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا