ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks, such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention are both sufficien t for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied independently to image patches (i.e. mixing the per-location features), and one with MLPs applied across patches (i.e. mixing spatial information). When trained on large datasets, or with modern regularization schemes, MLP-Mixer attains competitive scores on image classification benchmarks, with pre-training and inference cost comparable to state-of-the-art models. We hope that these results spark further research beyond the realms of well established CNNs and Transformers.
We study deep neural networks (DNNs) trained on natural image data with entirely random labels. Despite its popularity in the literature, where it is often used to study memorization, generalization, and other phenomena, little is known about what DN Ns learn in this setting. In this paper, we show analytically for convolutional and fully connected networks that an alignment between the principal components of network parameters and data takes place when training with random labels. We study this alignment effect by investigating neural networks pre-trained on randomly labelled image data and subsequently fine-tuned on disjoint datasets with random or real labels. We show how this alignment produces a positive transfer: networks pre-trained with random labels train faster downstream compared to training from scratch even after accounting for simple effects, such as weight scaling. We analyze how competing effects, such as specialization at later layers, may hide the positive transfer. These effects are studied in several network architectures, including VGG16 and ResNet18, on CIFAR10 and ImageNet.
We introduce GeNet, a method for shotgun metagenomic classification from raw DNA sequences that exploits the known hierarchical structure between labels for training. We provide a comparison with state-of-the-art methods Kraken and Centrifuge on data sets obtained from several sequencing technologies, in which dataset shift occurs. We show that GeNet obtains competitive precision and good recall, with orders of magnitude less memory requirements. Moreover, we show that a linear model trained on top of representations learned by GeNet achieves recall comparable to state-of-the-art methods on the aforementioned datasets, and achieves over 90% accuracy in a challenging pathogen detection problem. This provides evidence of the usefulness of the representations learned by GeNet for downstream biological tasks.
A common assumption in causal modeling posits that the data is generated by a set of independent mechanisms, and algorithms should aim to recover this structure. Standard unsupervised learning, however, is often concerned with training a single model to capture the overall distribution or aspects thereof. Inspired by clustering approaches, we consider mixtures of implicit generative models that ``disentangle the independent generative mechanisms underlying the data. Relying on an additional set of discriminators, we propose a competitive training procedure in which the models only need to capture the portion of the data distribution from which they can produce realistic samples. As a by-product, each model is simpler and faster to train. We empirically show that our approach splits the training distribution in a sensible way and increases the quality of the generated samples.
We study the role of latent space dimensionality in Wasserstein auto-encoders (WAEs). Through experimentation on synthetic and real datasets, we argue that random encoders should be preferred over deterministic encoders. We highlight the potential of WAEs for representation learning with promising results on a benchmark disentanglement task.
We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which lea ds to a different regularizer than the one used by the Variational Auto-Encoder (VAE). This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE). Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality, as measured by the FID score.
We study unsupervised generative modeling in terms of the optimal transport (OT) problem between true (but unknown) data distribution $P_X$ and the latent variable model distribution $P_G$. We show that the OT problem can be equivalently written in t erms of probabilistic encoders, which are constrained to match the posterior and prior distributions over the latent space. When relaxed, this constrained optimization problem leads to a penalized optimal transport (POT) objective, which can be efficiently minimized using stochastic gradient descent by sampling from $P_X$ and $P_G$. We show that POT for the 2-Wasserstein distance coincides with the objective heuristically employed in adversarial auto-encoders (AAE) (Makhzani et al., 2016), which provides the first theoretical justification for AAEs known to the authors. We also compare POT to other popular techniques like variational auto-encoders (VAE) (Kingma and Welling, 2014). Our theoretical results include (a) a better understanding of the commonly observed blurriness of images generated by VAEs, and (b) establishing duality between Wasserstein GAN (Arjovsky and Bottou, 2017) and POT for the 1-Wasserstein distance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا