ترغب بنشر مسار تعليمي؟ اضغط هنا

This work characterises the sky localization and early warning performance of networks of third generation gravitational wave detectors, consisting of different combinations of detectors with either the Einstein Telescope or Cosmic Explorer configura tion in sites in North America, Europe and Australia. Using a Fisher matrix method which includes the effect of earth rotation, we estimate the sky localization uncertainty for $1.4text{M}odot$-$1.4text{M}odot$ binary neutron star mergers at distances $40text{Mpc}$, $200text{Mpc}$, $400text{Mpc}$, $800text{Mpc}$, $1600text{Mpc}$, and an assumed astrophysical population up to redshift of 2 to characterize its performance for binary neutron star observations. We find that, for binary neutron star mergers at $200text{Mpc}$ and a network consisting of the Einstein Telescope, Cosmic Explorer and an extra Einstein Telescope-like detector in Australia(2ET1CE), the upper limit of the size of the 90% credible region for the best localized 90% signals is $0.51text{deg}^2$. For the simulated astrophysical distribution, this upper limit is $183.58text{deg}^2$. If the Einstein Telescope-like detector in Australia is replaced with a Cosmic Explorer-like detector(1ET2CE), for $200text{Mpc}$ case, the upper limit is $0.36text{deg}^2$, while for astrophysical distribution, it is $113.55text{deg}^2$. We note that the 1ET2CE network can detect 7.2% more of the simulated astrophysical population than the 2ET1CE network. In terms of early warning performance, we find that a network of 2ET1CE and 1ET2CE networks can both provide early warnings of the order of 1 hour prior to merger with sky localization uncertainties of 30 square degrees or less. Our study concludes that the 1ET2CE network is a good compromise between binary neutron stars detection rate, sky localization and early warning capabilities.
This work describes the operation of a High Frequency Gravitational Wave detector based on a cryogenic Bulk Acoustic Wave (BAW) cavity and reports observation of rare events during 153 days of operation over two seperate experimental runs (Run 1 and Run 2). In both Run 1 and Run 2 two modes were simultaneously monitored. Across both runs, the 3rd overtone of the fast shear mode (3B) operating at 5.506 MHz was monitored, while in Run 1 the second mode was chosen to be the 5th OT of the slow shear mode (5C) operating at 8.392 MHz. However, in Run 2 the second mode was selected to be closer in frequency to the first mode, and chosen to be the 3rd overtone of the slow shear mode (3C) operating at 4.993 MHz. Two strong events were observed as transients responding to energy deposition within acoustic modes of the cavity. The first event occurred during Run 1 on the 12/05/2019 (UTC), and was observed in the 5.506 MHz mode, while the second mode at 8.392 MHz observed no event. During Run 2, a second event occurred on the 27/11/2019(UTC) and was observed by both modes. Timing of the events were checked against available environmental observations as well as data from other detectors. Various possibilities explaining the origins of the events are discussed.
We demonstrate the application of a convolutional neural network to the gravitational wave signals from core collapse supernovae. Using simulated time series of gravitational wave detectors, we show that based on the explosion mechanisms, a convoluti onal neural network can be used to detect and classify the gravitational wave signals buried in noise. For the waveforms used in the training of the convolutional neural network, our results suggest that a network of advanced LIGO, advanced VIRGO and KAGRA, or a network of LIGO A+, advanced VIRGO and KAGRA is likely to detect a magnetorotational core collapse supernovae within the Large and Small Magellanic Clouds, or a Galactic event if the explosion mechanism is the neutrino-driven mechanism. By testing the convolutional neural network with waveforms not used for training, we show that the true alarm probabilities are 52% and 83% at 60 kpc for waveforms R3E1AC and R4E1FC L. For waveforms s20 and SFHx at 10 kpc, the true alarm probabilities are 70% and 93% respectively. All at false alarm probability equal to 10%.
A structured gamma-ray burst jet could explain the dimness of the prompt emission observed from GRB$,170817$A but the exact form of this structure is still ambiguous. However, with the promise of future joint gravitational wave and gamma-ray burst ob servations, we shall be able to examine populations of binary neutron star mergers rather than a case-by-case basis. We present an analysis that considers gravitational wave triggered binary neutron star events both with and without short gamma-ray burst counterparts assuming that events without a counterpart were observed off-axis. This allows for Bayes factors to be calculated to compare different jet structure models. We perform model comparison between a Gaussian and power-law apparent jet structure on simulated data to demonstrate that the correct model can be distinguished with a log Bayes factor of $>5$ after less than 100 events. Constraints on the apparent structure jet model parameters are also made. After 25(100) events the angular width of the core of a power-law jet structure can be constrained within a $90%$ credible interval of width $ sim9.1(4.4)^{circ} $, and the outer beaming angle to be within $sim19.9(8.5)^{circ}$. Similarly we show the width of a Gaussian jet structure to be constrained to $sim2.8(1.6)^{circ}$.
Gravitational wave (GW) detection is now commonplace and as the sensitivity of the global network of GW detectors improves, we will observe $mathcal{O}(100)$s of transient GW events per year. The current methods used to estimate their source paramete rs employ optimally sensitive but computationally costly Bayesian inference approaches where typical analyses have taken between 6 hours and 5 days. For binary neutron star and neutron star black hole systems prompt counterpart electromagnetic (EM) signatures are expected on timescales of 1 second -- 1 minute and the current fastest method for alerting EM follow-up observers, can provide estimates in $mathcal{O}(1)$ minute, on a limited range of key source parameters. Here we show that a conditional variational autoencoder pre-trained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution $sim 6$ orders of magnitude faster than existing techniques.
Gravitational wave astrophysics relies heavily on the use of matched filtering both to detect signals in noisy data from detectors, and to perform parameter estimation on those signals. Matched filtering relies upon prior knowledge of the signals exp ected to be produced by a range of astrophysical systems, such as binary black holes. These waveform signals can be computed using numerical relativity techniques, where the Einstein field equations are solved numerically, and the signal is extracted from the simulation. Numerical relativity simulations are, however, computationally expensive, leading to the need for a surrogate model which can predict waveform signals in regions of the physical parameter space which have not been probed directly by simulation. We present a method for producing such a surrogate using Gaussian process regression which is trained directly on waveforms generated by numerical relativity. This model returns not just a single interpolated value for the waveform at a new point, but a full posterior probability distribution on the predicted value. This model is therefore an ideal component in a Bayesian analysis framework, through which the uncertainty in the interpolation can be taken into account when performing parameter estimation of signals.
The sudden spin-down in the rotation of magnetar 1E 2259+586 observed by Archibald et al. (2013) was a rare event. However this particular event, referred to as an anti-glitch, was followed by another event which Archibald et al. (2013) suggested cou ld either be a conventional glitch or another anti-glitch. Although there is no accompanied radiation activity or pulse profile change, there is decisive evidence for the existence of the second timing event, judging from the timing data. We apply Bayesian Model Selection to quantitatively determine which of these possibilities better explains the observed data. We show that the observed data strongly supports the presence of two successive anti-glitches with a Bayes Factor, often called the odds ratio, greater than 40. Furthermore, we show that the second anti-gtlich has an associated frequency change $Delta u$ of $-8.2 times 10^{-8}$ Hz. We discuss the implications of these results for possible physical mechanisms behind this anti-glitch.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا