ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and finite-difference-time-domain simulations in 1D and 2D geometries. We show that produced THz signals interac t with free electron trajectories and thus influence significantly further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action plays a key role in the observed strong spectral broadening of the generated THz field. Diffraction limits the achievable THz bandwidth by efficiently depleting the low frequency amplitudes in the propagating field.
Forward and backward THz emission by ionizing two-color laser pulses in gas is investigated by means of a simple semi-analytical model based on Jefimenkos equation and rigorous Maxwell simulations in one and two dimensions. We find the emission in ba ckward direction having a much smaller spectral bandwidth than in forward direction and explain this by interference effects. Forward THz radiation is generated predominantly at the ionization front and thus almost not affected by the opacity of the plasma, in excellent agreement with results obtained from a unidirectional pulse propagation model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا