ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce an effective quark-meson-nucleon model for the QCD phase transitions at finite baryon density. The nucleon and the quark degrees of freedom are described within a unified framework of a chiral linear sigma model. The deconfinement transi tion is modeled through a simple modification of the distribution functions of nucleons and quarks, where an additional auxiliary field, the bag field, is introduced. The bag field plays a key role in converting between the nucleon and the quark degrees of freedom. The model predicts that the chiral and the deconfinement phase transitions are always separated. Depending on the model parameters, the chiral transition occurs in the baryon density range of $(1.5-15.5)n_0$, while the deconfinement transition occurs above $5 n_0$, where $n_0$ is the saturation density.
We consider the (3+1) dimensional expansion and cooling of the chirally-restored and deconfined matter at finite net-baryon densities as expected in heavy-ion collisions at moderate energies. In our approach, we consider chiral fields and the Polyako v loop as dynamical variables coupled to a medium represented by a quark-antiquark fluid. The interaction between the fields and the fluid leads to dissipation and noise, which in turn affect the field fluctuations. We demonstrate how inhomogeneities in the net-baryon density may form during an evolution through the spinodal region of the first-order phase transition. For comparison, the dynamics of transition through the crossover and critical end point is also considered.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا