ترغب بنشر مسار تعليمي؟ اضغط هنا

Over-screened Kondo effect is feasible in carbon nanotube quantum dot junction hosting a spin $tfrac{1}{2}$ atom with single $s$-wave valence electron (e.g Au). The idea is to use the two valleys as two symmetry protected flavor quantum numbers $xi={ bf K}, {bf K}$. Perturbative RG analysis exposes the finite weak-coupling two-channel fixed point, where the Kondo temperature is estimated to be around $0.5div5$~K. Remarkably, occurrence of two different scaling regimes implies a non-monotonic dependence of the conductance as function of temperature.
We study the Kondo effect in a CNT(left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is a single-wall metallic carbon nanotube, for which 1) the valence and conduction bands of electrons with zero orbital angular momentum ($m=0$) coalesc at the two valley points ${bf{K}}$ and ${bf{K}}$ of the first Brillouin zone and 2) the energy spectrum of electrons with $m e 0$ has a gap whose size is proportional to $|m|$. Following adsorption of hydrogen atoms and application of an appropriately designed gate potential, electron energy levels in the CNT(QD) are tunable to have: 1) two-fold spin degeneracy; 2) two-fold isospin (valley) degeneracy; 3) three-fold orbital degeneracy $m=0,pm1$. As a result, an SU(12) Kondo effect is realized with remarkably high Kondo temperature. Unlike the SU(2) case, the low temperature conductance and magnetic susceptibility have a peak at finite temperature. Moreover, the magnetic susceptibilities for parallel and perpendicular magnetic fields (WRT the tube axis) display anisotropy with a universal ratio $chi_{rm{imp}}^parallel / chi_{rm{imp}}^perp=eta$ that depends only on the electrons orbital and spin $g$ factors.
It has been recently suggested that when an Anderson impurity is immersed in the bulk of a topological insulator, a Kondo resonant peak will appear simultaneously with an in-gap bound-state when the band-dispersion has an inverted-Mexican-hat form. T he mid-gap bound-state generates another spin state and the Kondo effect is thereby screened. In this paper we study this problem within a weak-coupling RG scheme where we show that the system exhibits complex crossover behavior between different symmetry configurations and may evolve into a self-screened-Kondo or SO(3) low energy fix point. Experimental consequences of this scenario are pointed out.
The physics of a junction composed of a normal metal, quantum dot and 2D topological insulator (in a quantum spin Hall state) is elucidated. It maifests a subtle combination of Kondo correlations and quantum spin Hall edge states moving on the opposi te sides of the 2D topological insulator. In a narrow strip geometry these edge states interact and a gap opens in the edge state spectrum. Consequently, Kondo screening is less effective and that affects electron transport through the junction. Specifically, when edge state coupling is strong enough, the tunneling differential conductance develops a dip at zero temperature instead of the standard zero bias Kondo peak.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا