ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we give lower bounds for the representation of real univariate polynomials as sums of powers of degree 1 polynomials. We present two families of polynomials of degree d such that the number of powers that are required in such a represen tation must be at least of order d. This is clearly optimal up to a constant factor. Previous lower bounds for this problem were only of order $Omega$($sqrt$ d), and were obtained from arguments based on Wronskian determinants and shifted derivatives. We obtain this improvement thanks to a new lower bound method based on Birkhoff interpolation (also known as lacunary polynomial interpolation).
Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph $G$, checks whether its toric ideal $P_G$ is a complete intersection or not. Whenever $P_G$ is a complete intersection, the algorithm also returns a minimal set of generators of $P_G$. Moreover, we prove that if $G$ is a connected graph and $P_G$ is a complete intersection, then there exist two induced subgraphs $R$ and $C$ of $G$ such that the vertex set $V(G)$ of $G$ is the disjoint union of $V(R)$ and $V(C)$, where $R$ is a bipartite ring graph and $C$ is either the empty graph, an odd primitive cycle, or consists of two odd primitive cycles properly connected. Finally, if $R$ is $2$-connected and $C$ is connected, we list the families of graphs whose toric ideals are complete intersection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا