ترغب بنشر مسار تعليمي؟ اضغط هنا

We have discovered a novel candidate for a spin liquid state in a ruthenium oxide composed of dimers of $S = $ 3/2 spins of Ru$^{5+}$,Ba$_3$ZnRu$_2$O$_9$. This compound lacks a long range order down to 37 mK, which is a temperature 5000-times lower t han the magnetic interaction scale of around 200 K. Partial substitution for Zn can continuously vary the magnetic ground state from an antiferromagnetic order to a spin-gapped state through the liquid state. This indicates that the spin-liquid state emerges from a delicate balance of inter- and intra-dimer interactions, and the spin state of the dimer plays a vital role. This unique feature should realize a new type of quantum magnetism.
We have prepared polycrystalline samples of the trimer Ir oxide BaIrO3 with face-shared Ir3O12 trimers, and have investigated the origin of the phase transition at 182 K by measuring resistivity, thermopower, magnetization and synchrotron x-ray diffr action. We propose a possible electronic model and transition mechanism, starting from a localized electron picture on the basis of the Rietveld refinement. Within this model, BaIrO3 can be basically regarded as a Mott insulator, when the Ir3O12 trimer is identified to one pseudo-atom or one lattice site. The transition can be viewed as a transition from the Mott insulator phase to a kind of charge ordered insulator phase.
Neutron diffraction for a polycrystalline sample of LaCo$_{0.8}$Rh$_{0.2}$O$_{3}$ and synchrotron x-ray diffraction for polycrystalline samples of LaCo$_{0.9}$Rh$_{0.1}$O$_{3}$ and LaCo$_{0.8}$Rh$_{0.2}$O$_{3}$ have been carried out in order to inves tigate the structural properties related with the spin state of Co$^{3+}$ ions. We have found that the values of the Co(Rh)-O bond lengths in the Co(Rh)O$_{6}$ octahedron of LaCo$_{0.8}$Rh$_{0.2}$O$_{3}$ are nearly identical at 10 K. The lattice volume for the Rh$^{3+}$ substituted samples decreases with the thermal expansion coefficient similar to that of LaCoO$_{3}$ from room temperature, and ceases to decrease around 70 K. These experimental results favor a mixed state consisting of the high-spin-state and low-spin-state Co$^{3+}$ ions, and suggest that the high-spin-state Co$^{3+}$ ions are thermally excited in addition to those pinned by the substituted Rh$^{3+}$ ions.
Synchrotron X-ray diffraction patterns were measured and analyzed for a polycrystalline sample of the room-temperature ferromagnet Sr3.12Er0.88Co4O10.5 from 300 to 650 K, from which two structural phase transitions were found to occur successively. T he higher-temperature transition at 509 K is driven by ordering of the oxygen vacancies, which is closely related to the metallic state at high temperatures. The lower-temperature transition at 360 K is of first order, at which the ferromagnetic state suddenly appears with exhibiting a jump in magnetization and resistivity. Based on the refined structure, possible spin and orbital models for the magnetic order are proposed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا