ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable intelligent surface (RIS)-empowered communications is on the rise and is a promising technology envisioned to aid in 6G and beyond wireless communication networks. RISs can manipulate impinging waves through their electromagnetic eleme nts enabling some sort of a control over the wireless channel. In this paper, the potential of RIS technology is explored to perform equalization over-the-air for frequency-selective channels whereas, equalization is generally conducted at either the transmitter or receiver in conventional communication systems. Specifically, with the aid of an RIS, the frequency-selective channel from the transmitter to the RIS is transformed to a frequency-flat channel through elimination of inter-symbol interference (ISI) components at the receiver. ISI is eliminated by adjusting the phases of impinging signals particularly to maximize the incoming signal of the strongest tap. First, a general end-to-end system model is provided and a continuous to discrete-time signal model is presented. Subsequently, a probabilistic analysis for the elimination of ISI terms is conducted and reinforced with computer simulations. Furthermore, a theoretical error probability analysis is performed along with computer simulations. It is demonstrated that with the proposed method, ISI can successfully be eliminated and the RIS-aided communication channel can be converted from frequency-selective to frequency-flat.
In this paper, we propose a physical layer security scheme that exploits a novel index modulation (IM) technique for coordinate interleaved orthogonal designs (CIOD). Utilizing the diversity gain of CIOD transmission, the proposed scheme, named CIOD- IM, provides an improved spectral efficiency by means of IM. In order to provide a satisfactory secrecy rate, we design a particular artificial noise matrix, which does not affect the performance of the legitimate receiver, while deteriorating the performance of the eavesdropper. We derive expressions of the ergodic secrecy rate and the theoretical bit error rate upper bound. In addition, we analyze the case of imperfect channel estimation by taking practical concerns into consideration. It is shown via computer simulations that the proposed scheme outperforms the existing IM-based schemes and might be a candidate for future secure communication systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا