ترغب بنشر مسار تعليمي؟ اضغط هنا

Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversi fication occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can by introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient.
For general dissipative dynamical systems we study what fraction of solutions exhibit chaotic behavior depending on the dimensionality $d$ of the phase space. We find that a system of $d$ globally coupled ODEs with quadratic and cubic non-linearities with random coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from $sim 10^{-5} - 10^{-4}$ for $d=3$ to essentially one for $dsim 50$. In the limit of large $d$, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity but does not depend on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling and for the probability of chaos.
The possibility of complicated dynamic behaviour driven by non-linear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-te rm evolutionary chaos is rarely considered. The concept of survival of the fittest is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for the evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are epistatic interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. Our analysis may also be the first systematic study of the occurrence of chaos in multidimensional and generally dissipative systems as a function of the dimensionality of phase space.
The generation of two non-identical membrane compartments via exchange of vesicles is considered to require two types of vesicles specified by distinct cytosolic coats that selectively recruit cargo and two membrane-bound SNARE pairs that specify fus ion and differ in their affinities for each type of vesicles. The mammalian Golgi complex is composed of 6-8 non-identical cisternae that undergo gradual maturation and replacement yet features only two SNARE pairs. We present a model that explains how the distinct composition of Golgi cisternae can be generated with two and even a single SNARE pair and one vesicle coat. A decay of active SNARE concentration in aging cisternae provides the seed for a cis > trans SNARE gradient that generates the predominantly retrograde vesicle flux which further enhances the gradient. This flux in turn yields the observed inhomogeneous steady-state distribution of Golgi enzymes, which compete with each other and with the SNAREs for incorporation into transport vesicles. We show analytically that the steady state SNARE concentration decays exponentially with the cisterna number. Numerical solutions of rate equations reproduce the experimentally observed SNARE gradients, overlapping enzyme peaks in cis, medial and trans and the reported change in vesicle nature across Golgi: Vesicles originating from younger cisternae mostly contain Golgi enzymes and SNAREs enriched in these cisternae and extensively recycle through the Endoplasmic Reticulum (ER), while the other subpopulation of vesicles contains Golgi proteins prevalent in older cisternae and hardly reaches the ER.
Adaptive dynamics is a widely used framework for modeling long-term evolution of continuous phenotypes. It is based on invasion fitness functions, which determine selection gradients and the canonical equation of adaptive dynamics. Even though the de rivation of the adaptive dynamics from a given invasion fitness function is general and model-independent, the derivation of the invasion fitness function itself requires specification of an underlying ecological model. Therefore, evolutionary insights gained from adaptive dynamics models are generally model-dependent. Logistic models for symmetric, frequency-dependent competition are widely used in this context. Such models have the property that the selection gradients derived from them are gradients of scalar functions, which reflects a certain gradient property of the corresponding invasion fitness function. We show that any adaptive dynamics model that is based on an invasion fitness functions with this gradient property can be transformed into a generalized symmetric competition model. This provides a precise delineation of the generality of results derived from competition models. Roughly speaking, to understand the adaptive dynamics of the class of models satisfying a certain gradient condition, one only needs a complete understanding of the adaptive dynamics of symmetric, frequency-dependent competition. We show how this result can be applied to number of basic issues in evolutionary theory.
Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors whe n the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level due to mechanisms present in unicellular ancestors and does not require any genetic pre-disposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, and in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modeled as evolution of a hereditary parameter, the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily due to the fitness advantage generated by the division of labour between cells in an aggregate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا