ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional lattices of coupled micropillars etched in a planar semiconductor microcavity offer a workbench to engineer the band structure of polaritons. We report experimental studies of honeycomb lattices where the polariton low-energy dispersi on is analogous to that of electrons in graphene. Using energy-resolved photoluminescence we directly observe Dirac cones, around which the dynamics of polaritons is described by the Dirac equation for massless particles. At higher energies, we observe p orbital bands, one of them with the nondispersive character of a flatband. The realization of this structure which holds massless, massive and infinitely massive particles opens the route towards studies of the interplay of dispersion, interactions, and frustration in a novel and controlled environment.
67 - Simon Pigeon 2010
We present a theoretical study of the hydrodynamic properties of a quantum gas of exciton-polaritons in a semiconductor microcavity under a resonant laser excitation. The effect of a spatially extended defect on the superfluid flow is investigated as a function of the flow speed. The processes that are responsible for the nucleation of vortices and solitons in the wake of the defect are characterized, as well as the regimes where the superfluid flow remains unperturbed. Specific features due to the non-equilibrium nature of the polariton fluid are put in evidence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا