ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a study of the influence of an external magnetic field H and an electric current I on the spin-valve (SV) effect between a ferromagnetic thin film (F) and a sharp tip of a nonmagnetic metal (N). To explain our observations, we propose a mo del of a local surface SV which is formed in such a N/F contact. In this model, a ferromagnetic cluster at the N/F interface plays the role of the free layer in this SV. This cluster exhibits a larger coercive field than the bulk of the ferromagnetic film, presumably due to its nanoscale nature. Finally, we construct a magnetic state diagram of the surface SV as a function of I and H.
Conductance histograms of work-hardened Al show a series up to 11 equidistant peaks with a period of 1.15 +/- 0.02 of the quantum conductance unit G_0 = 2e^2/h. Assuming the peaks originate from atomic discreteness, this agrees with the value of 1.16 G_0 per atom obtained in numerical calculations by Hasmy et al.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا