ترغب بنشر مسار تعليمي؟ اضغط هنا

The electromagnetic bremsstrahlung spectrum for the dipole which falling by a spiral orbit into the Schwarzschild black hole was found. The characteristic features in this electromagnetic spectrum can be used for determine of the black hole mass by t he new way. This new way (if implemented) provides higher accuracy in determining of the black hole mass. Also these features in the spectrum can be used for determine of the certain characteristics in the black hole magnetosphere or in the accretion disk characteristics around the black hole. It is also shown that the asymptotic behavior of this spectrum (at high frequencies) is practically independent from the impact parameter of the falling dipole.
In this paper we construct a precise mathematical model of the Multiverse, consisted of the universes, that are connected with each other by dynamical wormholes. We consider spherically symmetric free of matter wormholes. At the same time separate un iverses in this model are not necessary spherically symmetric and can significantly differ from one another. We also analyze a possibility of the information exchange between different universes.
We study a static, spherically symmetric wormhole model whose metric coincides with that of the so-called Ellis wormhole but the material source of gravity consists of a perfect fluid with negative density and a source-free radial electric or magneti c field. For a certain class of fluid equations of state, it has been shown that this wormhole model is linearly stable under both spherically symmetric perturbations and axial perturbations of arbitrary multipolarity. A similar behavior is predicted for polar nonspherical perturbations. It thus seems to be the first example of a stable wormhole model in the framework of general relativity (at least without invoking phantom thin shells as wormhole sources).
The free fall of electric charges and dipoles, radial and freely falling into the Schwarzschild black hole event horizon, was considered. Inverse effect of electromagnetic fields on the black hole is neglected. Dipole was considered as a point partic le, so the deformation associated with exposure by tidal forces are neglected. According to the theorem, the lack of hair of black holes, multipole magnetic fields must be fully emitted by multipole fall into a black hole. The spectrum of electromagnetic radiation power for these multipoles (monopole and dipole) was found. Differences were found in the spectra for different orientations of the falling dipole. A general method has been developed to find radiated electromagnetic multipole fields for the free falling multipoles into a black hole (including higher order multipoles - quadrupoles, etc.). The electromagnetic spectrum can be compared with observational data from stellar mass and smaller black holes.
The stability of one type of the static Ellis-Bronnikov-Morris-Thorne wormholes is considered. These wormholes filled with radial magnetic field and phantom dust with a negative energy density.
The analytic solution of the general relativity equations for spherically symmetric wormholes are given. We investigate the special case of a traversable wormhole i.e., one allowing the signal to pass through it. The energy-momentum tensor of wormhol e matter is represented as a superposition of a spherically symmetric magnetic field and dust matter with negative matter density. The dynamics of the model are investigated. We discuss both the solution of the equation with a Lambda-term and without it. Superposing enough dust matter, a magnetic field, and a Lambda-term can produce a static solution, which turns out to be a spherical Multiverse model with an infinite number of wormholes connected spherical universes. Corresponding solution can be static and dynamic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا