ترغب بنشر مسار تعليمي؟ اضغط هنا

We study a flow of ultracold bosonic atoms through a one-dimensional channel that connects two macroscopic three-dimensional reservoirs of Bose-condensed atoms via weak links implemented as potential barriers between each of the reservoirs and the ch annel. We consider reservoirs at equal chemical potentials so that a superflow of the quasi-condensate through the channel is driven purely by a phase difference, $2Phi$, imprinted between the reservoirs. We find that the superflow never has the standard Josephson form $sim sin 2Phi $. Instead, the superflow discontinuously flips direction at $2Phi =pmpi$ and has metastable branches. We show that these features are robust and not smeared by fluctuations or phase slips. We describe a possible experimental setup for observing these phenomena.
We consider data losses in a single node of a packet-switched Internet-like network. We employ two distinct models, one with discrete and the other with continuous one-dimensional random walks, representing the state of a queue in a router. Both mode ls {have} a built-in critical behavior with {a sharp} transition from exponentially small to finite losses. It turns out that the finite capacity of a buffer and the packet-dropping procedure give rise to specific boundary conditions which lead to strong loss rate fluctuations at the critical point even in the absence of such fluctuations in the data arrival process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا