ترغب بنشر مسار تعليمي؟ اضغط هنا

31 - V. V. Grechnev 2014
Multi-instrument observations of two filament eruptions on 24 February and 11 May 2011 suggest the following updated scenario for eruptive flare, CME and shock wave evolution. An initial destabilization of a filament results in stretching out of magn etic threads belonging to its body and rooted in the photosphere along the inversion line. Their reconnection leads to i) heating of parts of the filament or its environment, ii) initial development of the flare arcade cusp and ribbons, and iii) increasing similarity of the filament to a curved flux rope and its acceleration. Then the pre-eruption arcade enveloping the filament gets involved in reconnection according to the standard model and continues to form the flare arcade and ribbons. The poloidal magnetic flux in the curved rope developing from the filament progressively increases and forces its toroidal expansion. This flux rope impulsively expands and produces an MHD disturbance, which rapidly steepens into a shock. The shock passes through the arcade expanding above the filament and then freely propagates ahead of the CME like a decelerating blast wave for some time. If the CME is slow, then the shock eventually decays. Otherwise, the frontal part of the shock changes into the bow-shock regime. This was observed for the first time in the 24 February 2011 event. When reconnection ceases, the flux rope relaxes and constitutes the CME core-cavity system. The expanding arcade develops into the CME frontal structure. We also found that reconnection in the current sheet of a remote streamer forced by the shocks passage results in a running flare-like process within the streamer responsible for a type II burst. The development of dimming and various associated phenomena are discussed.
Plasma with a temperature close to the chromospheric one is ejected in solar eruptions. Such plasma can occult some part of emission of compact sources in active regions as well as quiet solar areas. Absorption phenomena can be observed in the microw ave range as the so-called negative bursts and also in the He II 304 A line. The paper considers three eruptive events associated with rather powerful flares. Parameters of absorbing material of an eruption are estimated from multi-frequency records of a negative burst in one event. Destruction of an eruptive filament and its dispersion like a cloud over a huge area observed as a giant depression of the 304 A line emission has been revealed in a few events. One such event out of three ones known to us is considered in this paper. Another event is a possibility.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا