ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved photon detection can be used to generate entanglement between distinguishable photons. This technique can be extended to entangle quantum memories that emit photons with different frequencies and identical temporal profiles without the loss of entanglement rate or fidelity. We experimentally realize this process using remotely trapped $^{171}$Yb$^+$ ions where heralded entanglement is generated by interfering distinguishable photons. This technique may be necessary for future modular quantum systems and networks that are composed of heterogeneous qubits.
The performance of a quantum information processor depends on the precise control of phases introduced into the system during quantum gate operations. As the number of operations increases with the complexity of a computation, the phases of gates at different locations and different times must be controlled, which can be challenging for optically-driven operations. We circumvent this issue by demonstrating an entangling gate between two trapped atomic ions that is insensitive to the optical phases of the driving fields, while using a common master reference clock for all coherent qubit operations. Such techniques may be crucial for scaling to large quantum information processors in many physical platforms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا