ترغب بنشر مسار تعليمي؟ اضغط هنا

82 - N. Timoney , I. Usmani , P. Jobez 2013
A long-lived quantum memory is a firm requirement for implementing a quantum repeater scheme. Recent progress in solid-state rare-earth-ion-doped systems justifies their status as very strong candidates for such systems. Nonetheless an optical memory based on spin-wave storage at the single-photon-level has not been shown in such a system to date, which is crucial for achieving the long storage times required for quantum repeaters. In this letter we show that it is possible to execute a complete atomic frequency comb (AFC) scheme, including spin-wave storage, with weak coherent pulses of $bar{n} = 2.5 pm 0.6$ photons per pulse. We discuss in detail the experimental steps required to obtain this result and demonstrate the coherence of a stored time-bin pulse. We show a noise level of $(7.1 pm 2.3)10^{-3}$ photons per mode during storage, this relatively low-noise level paves the way for future quantum optics experiments using spin-waves in rare-earth-doped crystals.
153Eu3+:Y2SiO5 is a very attractive candidate for a long lived, multimode quantum memory due to the long spin coherence time (~15 ms), the relatively large hyperfine splitting (100 MHz) and the narrow optical homogeneous linewidth (~100 Hz). Here we show an atomic frequency comb memory with spin wave storage in a promising material 153Eu3+:Y2SiO5, reaching storage times slightly beyond 10 {mu}s. We analyze the efficiency of the storage process and discuss ways of improving it. We also measure the inhomogeneous spin linewidth of 153Eu3+:Y2SiO5, which we find to be 69 pm 3 kHz. These results represent a further step towards realising a long lived multi mode solid state quantum memory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا