ترغب بنشر مسار تعليمي؟ اضغط هنا

54 - Y. Aikawa , D. Kamuro , I. Sakon 2011
To investigate the composition and evolution of circumstellar ice around low-mass YSOs, we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on dis ks. We performed slit-less spectroscopic observations using the grism mode of the Infrared Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 $mu$m to 5 $mu$m. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS04302), absorption bands of H$_2$O, CO$_2$, CO, and XCN are clearly detected. Column density ratios of CO$_2$ ice and CO ice relative to H$_2$O ice are 21-28% and 13-46%, respectively. If XCN is OCN$^-$, its column density is as high as 2-6% relative to H$_2$O ice. The HDO ice feature at 4.1 $mu$m is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 $mu$m provide upper limits to the CH$_3$OH abundance of 26% (L1527) and 42% (IRAS04302) relative to H$_2$O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN$^-$ could originate in the region close to the protostar, where there are warm temperatures and UV radiation. We detect H$_2$O ice band towards ASR41 and 2MASSJ1628137-243139, which are edge-on class II disks. We also detect H$_2$O ice and CO$_2$ ice towards HV Tau, HK Tau, and UY Aur, and tentatively detect CO gas features towards HK Tau and UY Aur.
112 - R. Ohsawa , I. Sakon , T. Onaka 2010
We present the results of near-infrared (NIR) multi-epoch observations of the optical transient in the nearby galaxy NGC300 (NGC300-OT) at 398 and 582 days after the discovery with the Infrared Camera (IRC) onboard AKARI. NIR spectra (2--5 um) of NGC 300-OT were obtained for the first time. They show no prominent emission nor absorption features, but are dominated by continuum thermal emission from the dust around NGC300-OT. NIR images were taken in the 2.4, 3.2, and 4.1 um bands. The spectral energy distributions (SED) of NGC300-OT indicate the dust temperature of 810 (+-14) K at 398 days and 670 (+-12) K at 582 days. We attribute the observed NIR emission to the thermal emission from dust grains formed in the ejecta of NGC300-OT. The multi-epoch observations enable us to estimate the dust optical depth as larger than about 12 at 398 days and larger than about 6 at 582 days at 2.4 um, by assuming an isothermal dust cloud. The observed NIR emission must be optically thick, unless the amount of dust grains increases with time. Little extinction at visible wavelengths reported in earlier observations suggests that the dust cloud around NGC300-OT should be distributed inhomogeneously so as to not screen the radiation from the ejecta gas and the central star. The present results suggest the dust grains are not formed in spherically symmetric geometry, but rather in a torus, a bipolar outflow, or clumpy cloudlets.
39 - H. Kaneda , T. Onaka , I. Sakon 2008
We performed mid-infrared spectroscopic observations of 18 local dusty elliptical galaxies by using the Infrared Spectrograph (IRS) on board Spitzer. We have significantly detected polycyclic aromatic hydrocarbon (PAH) features from 14 out of the 18 galaxies, and thus found that the presence of PAHs is not rare but rather common in dusty elliptical galaxies. Most of these galaxies show an unusually weak 7.7 um emission feature relative to 11.3 um and 17 um emission features. A large fraction of the galaxies also exhibit H2 rotational line and ionic fine-structure line emissions, which have no significant correlation with the PAH emissions. The PAH features are well correlated with the continuum at 35 um, whereas they are not correlated with the continuum at 6 um. We conclude that the PAH emission of the elliptical galaxies is mostly of interstellar origin rather than of stellar origin, and that the unusual PAH interband strength ratios are likely to be due to a large fraction of neutral to ionized PAHs.
38 - I. Sakon , T. Wada , Y. Ohyama 2007
We present our latest results on near- to mid- infrared observation of SN2006jc at 200 days after the discovery using the Infrared Camera (IRC) on board $AKARI$. The near-infrared (2--5$mu$m) spectrum of SN2006jc is obtained for the first time and is found to be well interpreted in terms of the thermal emission from amorphous carbon of 800$pm 10$K with the mass of $6.9pm 0.5 times 10^{-5}M_{odot}$ that was formed in the supernova ejecta. This dust mass newly formed in the ejecta of SN 2006jc is in a range similar to those obtained for other several dust forming core collapse supernovae based on recent observations (i.e., $10^{-3}$--$10^{-5}$$M_{odot}$). Mid-infrared photometric data with {it{AKARI}}/IRC MIR-S/S7, S9W, and S11 bands have shown excess emission over the thermal emission by hot amorphous carbon of 800K. This mid-infrared excess emission is likely to be accounted for by the emission from warm amorphous carbon dust of 320$pm 10$K with the mass of 2.7$^{+0.7}_{-0.5} times 10^{-3}M_{odot}$ rather than by the band emission of astronomical silicate and/or silica grains. This warm amorphous carbon dust is expected to have been formed in the mass loss wind associated with the Wolf-Rayet stellar activity before the SN explosion. Our result suggests that a significant amount of dust is condensed in the mass loss wind prior to the SN explosion. A possible contribution of emission bands by precursory SiO molecules in 7.5--9.5$mu$m is also suggested.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا