ترغب بنشر مسار تعليمي؟ اضغط هنا

We study coupling between the ferroelectric polarization and magnetization of granular ferromagnetic film using a phenomenological model of combined multiferroic system consisting of granular ferromagnetic film placed above the ferroelectric (FE) lay er. The coupling is due to screening of Coulomb interaction in the granular film by the FE layer. Below the FE Curie temperature the magnetization has hysteresis as a function of electric field. Below the magnetic ordering temperature the polarization has hysteresis as a function of magnetic field. We study the magneto-electric coupling for weak and strong spatial dispersion of the FE layer. The effect of mutual influence decreases with increasing the spatial dispersion of the FE layer. For weak dispersion the strongest coupling occurs in the vicinity of the ferroelectric-paraelectric phase transition. For strong dispersion the situation is the opposite. We study the magneto-electric coupling as a function of distance between the FE layer and the granular film. For large distances the coupling decays exponentially due to the exponential decrease of electric field produced by the oscillating charges in the granular ferromagnetic film.
We study the tunneling transport through a nanojunction in the far-from-equilibrium regime at relatively low temperatures. We show that the current-voltage characteristics is significantly modified as compared to the usual quasi-equilibrium result by lifting the suppression due to the Coulomb blockade. These effects are important in realistic nanojunctions. We study the high-impedance case in detail to explain the underlying physics and construct a more realistic theoretical model for the case of a metallic junction taking into account dynamic Coulomb interaction. This dynamic screening further reduces the effect of the Coulomb blockade.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا