ترغب بنشر مسار تعليمي؟ اضغط هنا

155 - I. Martin , K. A. Matveev 2021
We study the nature of many-body eigenstates of a system of interacting chiral spinless fermions on a ring. We find a coexistence of fermionic and bosonic types of eigenstates in parts of the many-body spectrum. Some bosonic eigenstates, native to th e strong interaction limit, persist at intermediate and weak couplings, enabling persistent density oscillations in the system, despite it being far from integrability.
The stellar initial mass function (IMF) is central to our interpretation of astronomical observables and to our understanding of most baryonic processes within galaxies. The universality of the IMF, suggested by observations in our own Milky Way, has been thoroughly revisited due to the apparent excess of low-mass stars in the central regions of massive quiescent galaxies. As part of the efforts within the Fornax 3D project, we aim to characterize the two-dimensional IMF variations in a sample of 23 quiescent galaxies within the Fornax cluster. For each galaxy in the sample, we measured the mean age, metallicity, [Mg/Fe], and IMF slope maps from spatially resolved integrated spectra. The IMF maps show a variety of behaviors and internal substructures, roughly following metallicity variations. However, metallicity alone is not able to fully explain the complexity exhibited by the IMF maps. In particular, for relatively metal-poor stellar populations, the slope of the IMF seems to depend on the (specific) star formation rate at which stars were formed. Moreover, metallicity maps have systematically higher ellipticities than IMF slope ones. At the same time, both metallicity and IMF slope maps have at the same time higher ellipticities than the stellar light distribution in our sample of galaxies. In addition we find that, regardless of the stellar mass, every galaxy in our sample shows a positive radial [Mg/Fe] gradient. This results in a strong [Fe/H]-[Mg/Fe] relation, similar to what is observed in nearby, resolved galaxies. Since the formation history and chemical enrichment of galaxies are causally driven by changes in the IMF, our findings call for a physically motivated interpretation of stellar population measurements based on integrated spectra that take into account any possible time evolution of the stellar populations.
We propose a strategy based on the site-bond percolation to minimize the propagation of textit{Phytophthora} zoospores on plantations, consisting in introducing physical barriers between neighboring plants. Two clustering processes are distinguished: i) one of cells with the presence of the pathogen, detected on soil analysis; and ii) that of diseased plants, revealed from a visual inspection of the plantation. The former is well described by the standard site-bond percolation. In the latter, the percolation threshold is fitted by a Tsallis distribution when no barriers are introduced. We provide, for both cases, the formulae for the minimal barrier density to prevent the emergence of the spanning cluster. Though this work is focused on a specific pathogen, the model presented here can also be applied to prevent the spreading of other pathogens that disseminate, by other means, from one plant to the neighboring ones. Finally, the application of this strategy to three types of commercialy important Mexican chili plants is also shown.
Chemical equilibrium has proven extremely useful to predict the chemical composition of AGB atmospheres. Here we use a recently developed code and an updated thermochemical database, including gaseous and condensed species involving 34 elements, to c ompute the chemical equilibrium composition of AGB atmospheres of M-, S-, and C-type stars. We include for the first time TixCy clusters, with x = 1-4 and y = 1-4, and selected larger clusters ranging up to Ti13C22, for which thermochemical data is obtained from quantum chemical calculations. We find that in general chemical equilibrium reproduces well the observed abundances of parent molecules in circumstellar envelopes of AGB stars. There are however severe discrepancies, of various orders of magnitude, for some parent molecules: HCN, CS, NH3, and SO2 in M-type stars, H2O and NH3 in S-type stars, and the hydrides H2O, NH3, SiH4, and PH3 in C-type stars. Several molecules not yet observed in AGB atmospheres, like SiC5, SiNH, SiCl, PS, HBO, and the metal-containing molecules MgS, CaS, CaOH, CaCl, CaF, ScO, ZrO, VO, FeS, CoH, and NiS, are good candidates for detection with observatories like ALMA. The first condensates predicted are carbon, TiC, and SiC in C-rich atmospheres and Al2O3 in O-rich outflows. The most probable gas-phase precursors of dust are acetylene, atomic carbon, and/or C3 for carbon dust, SiC2 and Si2C for SiC dust, and atomic Al and AlOH, AlO, and Al2O for Al2O3 dust. In the case of TiC dust, atomic Ti is probably the main supplier of titanium. However, chemical equilibrium predicts that clusters like Ti8C12 and Ti13C22 become the major reservoirs of titanium at the expense of atomic Ti in the region where condensation of TiC is expected to occur, suggesting that the assembly of large TixCy clusters could be related to the formation of the first condensation nuclei of TiC.
The stellar initial mass function (IMF) regulates the baryonic cycle within galaxies, and is a key ingredient to translate observations into physical quantities. Although for decades it was assumed to be universal, there is now growing observational evidence showing that the center of massive early-type galaxies host an enhanced population of low-mass stars compared to the expectations from the Milky Way. Moreover, these variations in the IMF have been found to be related to the radial metallicity variations in massive galaxies. We present here a two-dimensional stellar population analysis of the massive lenticular galaxy FCC 167 (NGC 1380) as part of the Fornax3D project. Using a newly developed stellar population fitting scheme, we derive a full two-dimensional IMF map of an early-type galaxy. This two-dimensional analysis allows us go further than a radial analysis, showing how the metallicity changes along a disc-like structure while the IMF follows a distinct, less disky distribution. Thus, our findings indicate that metallicity cannot be the sole driver of the observed radial IMF variations. In addition, a comparison with the orbital decomposition shows suggestive evidence of a coupling between stellar population properties and the internal dynamical structure of FCC 167, where metallicity and IMF maps seem to track the distribution of cold and warm orbits, respectively.
The propagation of surface water waves interacting with a current and an uneven bottom is studied. Such a situation is typical for ocean waves where the winds generate currents in the top layer of the ocean. The role of the bottom topography is taken into account since it also influences the local wave and current patterns. Specific scaling of the variables is selected which leads to approximations of Boussinesq and KdV types. The arising KdV equation with variable coefficients, dependent on the bottom topography, is studied numerically when the initial condition is in the form of the one soliton solution for the initial depth. Emergence of new solitons is observed as a result of the wave interaction with the uneven bottom.
Boxy/peanut bulges are considered to be part of the same stellar structure as bars and both could be linked through the buckling instability. The Milky Way is our closest example. The goal of this letter is determining if the mass assembly of the dif ferent components leaves an imprint in their stellar populations allowing to estimate the time of bar formation and its evolution. To this aim we use integral field spectroscopy to derive the stellar age distributions, SADs, along the bar and disc of NGC 6032. The analysis shows clearly different SADs for the different bar areas. There is an underlying old (>=12 Gyr) stellar population for the whole galaxy. The bulge shows star formation happening at all times. The inner bar structure shows stars of ages older than 6 Gyrs with a deficit of younger populations. The outer bar region presents a SAD similar to that of the disc. To interpret our results, we use a generic numerical simulation of a barred galaxy. Thus, we constrain, for the first time, the epoch of bar formation, the buckling instability period and the posterior growth from disc material. We establish that the bar of NGC 6032 is old, formed around 10 Gyr ago while the buckling phase possibly happened around 8 Gyr ago. All these results point towards bars being long-lasting even in the presence of gas.
This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.
In this letter we describe how we use stellar dynamics information to constrain the shape of the stellar IMF in a sample of 27 early-type galaxies from the CALIFA survey. We obtain dynamical and stellar mass-to-light ratios, $Upsilon_mathrm{dyn}$ and $Upsilon_{ast}$, over a homogenous aperture of 0.5~$R_{e}$. We use the constraint $Upsilon_mathrm{dyn} ge Upsilon_{ast}$ to test two IMF shapes within the framework of the extended MILES stellar population models. We rule out a single power law IMF shape for 75% of the galaxies in our sample. Conversely, we find that a double power law IMF shape with a varying high-mass end slope is compatible (within 1$sigma$) with 95% of the galaxies. We also show that dynamical and stellar IMF mismatch factors give consistent results for the systematic variation of the IMF in these galaxies.
Three driving forces control the energy level alignment between transition-metal oxides and organic materials: the chemical interaction between the two materials, the organic electronegativity and the possible space charge layer formed in the oxide. This is illustrated in this letter by analyzing experimentally and theoretically a paradigmatic case, the TiO2(110) / TCNQ interface: due to the chemical interaction between the two materials, the organic electron affinity level is located below the Fermi energy of the n-doped TiO2. Then, one electron is transferred from the oxide to this level and a space charge layer is developed in the oxide inducing an important increase in the interface dipole and in the oxide work function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا