ترغب بنشر مسار تعليمي؟ اضغط هنا

Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is driven by UV/optical seed photon variations. We present the results of t he largest study to date of the relationship between the X-ray, UV and optical variability in an AGN with 554 observations, over a 750d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good overall correlation between the X-ray and UV/optical bands, particularly on short timescales (tens of days). These bands lag the X-ray band with lags which are proportional to wavelength to the power 1.23+/-0.31. This power is very close to the power (4/3) expected if short timescale UV/optical variability is driven by reprocessing of X-rays by a surrounding accretion disc. The observed lags, however, are longer than expected from a standard Shakura-Sunyaev accretion disc with X-ray heating, given the currently accepted black hole mass and accretion rate values, but can be explained with a slightly larger mass and accretion rate, and a generally hotter disc. Some long term UV/optical variations are not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical variability arising perhaps from accretion rate perturbations propagating inwards through the disc.
We discuss the origin of the optical variations in the Narrow line Seyfert 1 galaxy NGC 4051 and present the results of a cross-correlation study using X-ray and optical light curves spanning more than 12 years. The emission is highly variable in all wavebands, and the amplitude of the optical variations is found to be smaller than that of the X-rays, even after correcting for the contaminating host galaxy flux falling inside the photometric aperture. The optical power spectrum is best described by an unbroken power law model with slope $alpha=1.4^{+0.6}_{-0.2}$ and displays lower variability power than the 2-10 keV X-rays on all time-scales probed. We find the light curves to be significantly correlated at an optical delay of $1.2^{+1.0}_{-0.3}$ days behind the X-rays. This time-scale is consistent with the light travel time to the optical emitting region of the accretion disc, suggesting that the optical variations are driven by X-ray reprocessing. We show, however, that a model whereby the optical variations arise from reprocessing by a flat accretion disc cannot account for all the optical variability. There is also a second significant peak in the cross-correlation function, at an optical delay of $39^{+2.7}_{-8.4}$ days. The lag is consistent with the dust sublimation radius in this source, suggesting that there is a measurable amount of optical flux coming from the dust torus. We discuss the origin of the additional optical flux in terms of reprocessing of X-rays and reflection of optical light by the dust.
We present the results of concurrent X-ray and optical monitoring of the Seyfert 1 galaxy Mrk 79 over a period of more than five years. We find that on short to medium time-scales (days to a few tens of days) the 2-10 keV X-ray and optical u and V ba nd fluxes are significantly correlated, with a delay between the bands consistent with zero days. We show that most of these variations may be well reproduced by a model where the short-term optical variations originate from reprocessing of X-rays by an optically thick accretion disc. The optical light curves, however, also display long time-scale variations over thousands of days, which are not present in the X-ray light curve. These optical variations must originate from an independent variability mechanism and we show that they can be produced by variations in the (geometrically) thin disc accretion rate as well as by varying reprocessed fractions through changes in the location of the X-ray corona.
77 - P. Arevalo 2008
We compute Fourier-resolved X-ray spectra of the Seyfert 1 Markarian 766 to study the shape of the variable components contributing to the 0.3-10 keV energy spectrum and their time-scale dependence. The fractional variability spectra peak at 1-3 keV, as in other Seyfert 1 galaxies, consistent with either a constant contribution from a soft excess component below 1 keV and Compton reflection component above 2 keV, or variable warm absorption enhancing the variability in the 1-3 keV range. The rms spectra, which shows the shape of the variable components only, is well described by a single power law with an absorption feature around 0.7 keV, which gives it an apparent soft excess. This spectral shape can be produced by a power law varying in normalisation, affected by an approximately constant (within each orbit) warm absorber, with parameters similar to those found by Turner et al. for the warm-absorber layer covering all spectral components in their scattering scenario. The total soft excess in the average spectrum can therefore be produced by a combination of constant warm absorption on the power law plus an additional less variable component. On shorter time-scales, the rms spectrum hardens and this evolution is well described by a change in power law slope, while the absorption parameters remain the same. The frequency dependence of the rms spectra can be interpreted as variability arising from propagating fluctuations through an extended emitting region, whose emitted spectrum is a power law that hardens towards the centre. This scenario reduces the short time-scale variability of lower energy bands making the variable spectrum harder on shorter time-scales and at the same time explains the hard lags found in these data by Markowitz et al.
74 - I. M. McHardy 2007
We present a power spectral analysis of a 100 ksec XMM-Newton observation of the narrow line Seyfert 1 galaxy Ark~564. When combined with earlier RXTE and ASCA observations, these data produce a power spectrum covering seven decades of frequency whic h is well described by a power law with two very clear breaks. This shape is unlike the power spectra of almost all other AGN observed so far, which have only one detected break, and resemble Galactic binary systems in a soft state. The power spectrum can also be well described by the sum of two Lorentzian-shaped components, the one at higher frequencies having a hard spectrum, similar to those seen in Galactic binary systems. Previously we have demonstrated that the lag of the hard band variations relative to the soft band in Ark 564 is dependent on variability time-scale, as seen in Galactic binary sources. Here we show that the time-scale dependence of the lags can be described well using the same two-Lorentzian model which describes the power spectrum, assuming that each Lorentzian component has a distinct time lag. Thus all X-ray timing evidence points strongly to two discrete, localised, regions as the origin of most of the variability. Similar behaviour is seen in Galactic X-ray binary systems in most states other than the soft state, i.e. in the low-hard and intermediate/very high states. Given the very high accretion rate of Ark 564 the closest analogy is with the very high (intermediate) state rather than the low-hard state. We therefore strengthen the comparison between AGN and Galactic binary sources beyond previous studies by extending it to the previously poorly studied very high accretion rate regime.
We present the results of a deep 610 MHz survey of the 1^H XMM/Chandra survey area with the GMRT. The resulting maps have a resolution of ~7 arcsec and an rms noise limit of 60 microJy. To a 5 sigma detection limit of 300 microJy we detect 223 source s within a survey area of diameter 64 arcmin. We compute the 610 MHz source counts and compare them to those measured at other radio wavelengths. The well know flattening of the Euclidean-normalised 1.4 GHz source counts below ~2 mJy, usually explained by a population of starburst galaxies undergoing luminosity evolution, is seen at 610 MHz. The 610 MHz source counts can be modelled by the same populations that explain the 1.4 GHz source counts, assuming a spectral index of -0.7 for the starburst galaxies and the steep spectrum AGN population. We find a similar dependence of luminosity evolution on redshift for the starburst galaxies at 610 MHz as is found at 1.4 GHz (i.e. Q= 2.45 (+0.3,-0.4)).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا