ترغب بنشر مسار تعليمي؟ اضغط هنا

Nowadays superconductors serve in numerous applications, from high-field magnets to ultra-sensitive detectors of radiation. Mesoscopic superconducting devices, i.e. those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, e.g., leakage currents or decreased coherence times in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics which is in quantitative agreement with the experimental data.
We present a simple on-chip electronic thermometer with the potential to operate down to 1 mK. It is based on transport through a single normal-metal - superconductor tunnel junction with rapidly widening leads. The current through the junction is de termined by the temperature of the normal electrode that is efficiently thermalized to the phonon bath, and it is virtually insensitive to the temperature of the superconductor, even when the latter is relatively far from equilibrium. We demonstrate here the operation of the device down to 7 mK and present a systematic thermal analysis.
The conductance in two-dimensional (2D) normal-superconducting (NS) systems is analyzed in the limit of strong magnetic fields when the transport is mediated by the electron-hole states bound to the sample edges and NS interface, i.e., in the Integer Quantum Hall Effect regime.The Andreev-type process of the conversion of the quasiparticle current into the superflow is shown to be strongly affected by the mixing of the edge states localized at the NS and insulating boundaries. The magnetoconductance in 2D NS structures is calculated for both quadratic and Dirac-like normal state spectra. Assuming a random scattering of the edge modes we analyze both the average value and fluctuations of conductance for an arbitrary number of conducting channels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا