ترغب بنشر مسار تعليمي؟ اضغط هنا

191 - M. Branchesi 2007
In this paper we re-visit the observational relation between X-ray luminosity and temperature for high-z galaxy clusters and compare it with the local L_X-T and with theoretical models. To these ends we use a sample of 17 clusters extracted from the Chandra archive supplemented with additional clusters from the literature, either observed by Chandra or XMM-Newton, to form a final sample of 39 high redshift (0.25 < z < 1.3) objects. Different statistical approaches are adopted to analyze the L_X-T relation. The slope of the L_X-T relation of high redshift clusters is steeper than expected from the self-similar model predictions and steeper, even though still compatible within the errors, than the local L_X-T slope. The distant cluster L_X-T relation shows a significant evolution with respect to the local Universe: high-z clusters are more luminous than the local ones by a factor ~2 at any given temperature. The evolution with redshift of the L_X-T relation cannot be described by a single power law nor by the evolution predicted by the self-similar model. We find a strong evolution, similar or stronger than the self-similar model, from z = 0 to z <0.3 followed by a much weaker, if any, evolution at higher redshift. The weaker evolution is compatible with non-gravitational models of structure formation. According to us a statistically significant sample of nearby clusters (z < 0.25) should be observed with the current available X-ray telescopes to completely exclude observational effects due to different generation detectors and to understand this novel result.
118 - M. Branchesi 2007
The current generation of X-ray observatories like Chandra allows studies with very fine spatial details. It is now possible to resolve X-ray point sources projected into the cluster diffuse emission and exclude them from the analysis to estimate the ``correct X-ray observables. In order to verify the incidence of point sources on the cluster thermal emission and to evaluate the impact of their non-thermal emission on the determination of cluster properties, we used a sample of 18 high-z (0.25 < z < 1.01) clusters from the Chandra archive. We performed a detailed analysis of the cluster properties and compared the changes observed in the X-ray observables, like temperature and luminosity or their inter-relation, when one keeps the point sources in the analysis. The point sources projected into the cluster extended emission affect the estimates of cluster temperature or luminosity considerably (up to 13% and 17% respectively). These percentages become even larger for clusters with z > 0.7 where temperature and luminosity increase up to 24% and 22%, respectively. Thus the point sources should be removed to correctly estimate the cluster properties. However the inclusion of the point sources does not impact significantly the slope and normalization of the L-T relationship since for each cluster the correction to be applied to T and L produces a moderate shift in the L-T plane almost parallel to the best-fit of the ``correct L-T relation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا