ترغب بنشر مسار تعليمي؟ اضغط هنا

For a finite volume geodesic polyhedron P in hyperbolic 3-space, with the property that all interior angles between incident faces are integral submultiples of Pi, there is a naturally associated Coxeter group generated by reflections in the faces. F urthermore, this Coxeter group is a lattice inside the isometry group of hyperbolic 3-space, with fundamental domain the original polyhedron P. In this paper, we provide a procedure for computing the lower algebraic K-theory of the integral group ring of such Coxeter lattices in terms of the geometry of the polyhedron P. As an ingredient in the computation, we explicitly calculate some of the lower K-groups of the dihedral groups and the product of dihedral groups with the cyclic group of order two.
135 - J.-F. Lafont , I. J. Ortiz 2007
For a group G that splits as an amalgamation of A and B over a common subgroup C, there is an associated Waldhausen Nil-group, measuring the failure of Mayer-Vietoris for algebraic K-theory. Assume that (1) the amalgamation is acylindrical, and (2) t he groups A,B,G satisfy the Farrell-Jones isomorphism conjecture. Then we show that the Waldhausen Nil-group splits as a direct sum of Nil-groups associated to certain (explicitly describable) infinite virtually cyclic subgroups of G. We note that a special case of an acylindrical amalgamation includes any amalgamation over a finite group C.
185 - J.-F. Lafont , I. J. Ortiz 2007
A hyperbolic 3-simplex reflection group is a Coxeter group arising as a lattice in the isometry group of hyperbolic 3-space, with fundamental domain a geodesic simplex (possibly with some ideal vertices). The classification of these groups is known, and there are exactly 9 cocompact examples, and 23 non-cocompact examples. We provide a complete computation of the lower algebraic K-theory of the integral group ring of all the hyperbolic 3-simplex reflection groups.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا