ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss how some coronal mass ejections (CMEs) originating from the western limb of the Sun are associated with space weather effects such as solar energetic particles (SEPs), shock or geo-effective ejecta at Earth. We focus on the August 24, 2002 coronal mass ejection, a fast (~ 2000 km/s) eruption originating from W81. Using a three-dimensional magneto-hydrodynamic simulation of this ejection with the Space Weather Modeling Framework (SWMF), we show how a realistic initiation mechanism enables us to study the deflection of the CME in the corona and the heliosphere. Reconnection of the erupting magnetic field with that of neighboring streamers and active regions modify the solar connectivity of the field lines connecting to Earth and can also partly explain the deflection of the eruption during the first tens of minutes. Comparing the results at 1 AU of our simulation with observations by the ACE spacecraft, we find that the simulated shock does not reach Earth, but has a maximum angular span of about 120$^circ$, and reaches 35$^circ$ West of Earth in 58 hours. We find no significant deflection of the CME and its associated shock wave in the heliosphere, and we discuss the consequences for the shock angular span.
The interaction of multiple Coronal Mass Ejections (CMEs) has been observed by LASCO coronagraphs and by near-Earth spacecraft, and it is thought to be an important cause of geo-effective storms, large Solar Energetic Particles events and intense Typ e II radio bursts. New and future missions such as STEREO, the LWS Sentinels, and the Solar Orbiter will provide additional observations of the interaction of multiple CMEs between the Sun and the Earth. We present the results of simulations of two and more CMEs interacting in the inner heliosphere performed with the Space Weather Modeling Framework (SWMF). Based on those simulations, we discuss the observational evidence of the interaction of multiple CMEs, both in situ and from coronagraphs. The clearest evidence of the interaction of the CMEs are the large temperature in the sheath, due to the shocks merging, and the brightness increase in coronagraphic images, associated with the interaction of the leading edges. The importance of having multiple satellites at different distances and angular positions from the Sun is also discussed.
We discuss features of coronal mass ejections (CMEs) that are specific to heliospheric observations at large elongation angles. Our analysis is focused on a series of two eruptions that occurred on 2007 January 24-25, which were tracked by the Helios pheric Imagers (HIs) onboard STEREO. Using a three-dimensional (3-D) magneto-hydrodynamic simulation of these ejections with the Space Weather Modeling Framework (SWMF), we illustrate how the combination of the 3-D nature of CMEs, solar rotation, and geometry associated with the Thomson sphere results in complex effects in the brightness observed by the HIs. Our results demonstrate that these effects make any in-depth analysis of CME observations without 3-D simulations challenging. In particular, the association of bright features seen by the HIs with fronts of CME-driven shocks is far from trivial. In this Letter, we argue that, on 2007 January 26, the HIs observed not only two CMEs, but also a dense corotating stream compressed by the CME-driven shocks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا