ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive parallelisation has lead to a dramatic increase in available computational power. However, data transfer speeds have failed to keep pace and are the major limiting factor in the development of exascale computing. New algorithms must be develo ped which minimise the transfer of data. Patch dynamics is a computational macroscale modelling scheme which provides a coarse macroscale solution of a problem defined on a fine microscale by dividing the domain into many nonoverlapping, coupled patches. Patch dynamics is readily adaptable to massive parallelisation as each processor can evaluate the dynamics on one, or a few, patches. However, patch coupling conditions interpolate across the unevaluated parts of the domain between patches, and are typically reevaluated at every microscale time step, thus requiring almost continuous data transfer. We propose a modified patch dynamics scheme which minimises data transfer by only reevaluating the patch coupling conditions at `mesoscale time scales which are significantly larger than the microscale time of the microscale problem. We analyse the error arising from patch dynamics with mesoscale temporal coupling as a function of the mesoscale time interval, patch size, and ratio between the microscale and macroscale.
We consider one dimensional lattice diffusion model on a microscale grid with many discrete diffusivity values which repeat periodicially. Computer algebra explores how the dynamics of small coupled `patches predict the slow emergent macroscale dynam ics. We optimise the geometry and coupling of patches by comparing the macroscale predictions of the patch solutions with the macroscale solution on the infinite domain, which is derived for a general diffusivity period. The results indicate that patch dynamics is a viable method for numerical macroscale modelling of microscale systems with fine scale roughness. Moreover, the minimal error on the macroscale is generally obtained by coupling patches via `buffers that are as large as half of each patch.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا