ترغب بنشر مسار تعليمي؟ اضغط هنا

The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pil lars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopic abundance of $^{39}$Ar, a $beta$-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors, in the argon used for the dark-matter searches, the so-called Underground Argon (UAr). In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of isotopic cryogenic distillation of nitrogen with a prototype plant, operating the column at total reflux.
Future liquid-argon DarkSide-20k and ARGO detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of $sim$50~t and $sim$360~t for DarkSide-20k and ARGO, respectively. Thanks to the low-energy threshold of $sim$0.5~keV$_{nr}$ achievable by exploiting the ionization channel, DarkSide-20k and ARGO have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M$_{odot}$ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response.
We reanalize data collected with the DarkSide-50 experiment and recently used to set limits on the spin-independent interaction rate of weakly interacting massive particles (WIMPs) on argon nuclei with an effective field theory framework. The dataset corresponds to a total (16660 $pm$ 270) kg d exposure using a target of low-radioactivity argon extracted from underground sources. We obtain upper limits on the effective couplings of the 12 leading operators in the nonrelativistic systematic expansion. For each effective coupling we set constraints on WIMP-nucleon cross sections, setting upper limits between $2.4 times 10^{-45} , mathrm{cm}^2$ and $2.3 times 10^{-42} , mathrm{cm}^2$ (8.9 $times 10^{-45} , mathrm{cm}^2$ and 6.0 $times 10^{-42} , mathrm{cm}^2$) for WIMPs of mass of 100 $mathrm{GeV/c^2}$ (1000 $mathrm{GeV/c^2}$) at 90% confidence level.
This white paper summarizes the activities of the Brazilian community concerning dark matter physics and highlights the importance of financial support to Brazilian groups that are deeply involved in experimental endeavours. The flagships of the Braz ilian dark matter program are the Cherenkov Telescope Array, DARKSIDE, SBN and LHC experiments, but we emphasize that smaller experiments such as DAMIC and CONNIE constitute important probes to dark sectors as well and should receive special attention. Small experimental projects showing the potential to probe new regions of parameter space of dark matter models are encouraged. On the theoretical and phenomenological side, some groups are devoted to astrophysical aspects such as the dark matter density profile while others explore the signature of dark matter models at colliders, direct and indirect detection experiments. In summary, the Brazilian dark matter community that was born not long ago has grown tremendously in the past years and now plays an important role in the hunt for a dark matter particle.
The DarkSide-50 direct-detection dark matter experiment is a dual-phase argon time projection chamber operating at Laboratori Nazionali del Gran Sasso. This paper reports on the blind analysis of a (16,660+-270) kg d exposure using a target of low-ra dioactivity argon extracted from underground sources. We find no events in the dark matter selection box and set a 90% C.L. upper limit on the dark matter-nucleon spin-independent cross section of 1.14E-44 cm^2 (3.78E-44 cm^2, 3.43E-43 cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2, 10 TeV/c^2).
We present new constraints on sub-GeV dark matter particles scattering off electrons in argon based on an analysis of ionization signal data from the DarkSide-50 detector.
We present the results of a search for dark matter WIMPs in the mass range below 20 GeV/c^2 using a target of low-radioactivity argon. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso (LNGS). The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 events/keVee/kg/day and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^2 for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^2.
We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statistics $^{39}$Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 $pm$ 0.04) cm$^2$/s for a selection of 140keV electron recoil events in 200V/cm drift field and 2.8kV/cm extraction field. To study the systematics of our measurement we examine datasets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 $pm$ 0.09) cm$^2$ /s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 h as achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.
This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to chara cterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا