ترغب بنشر مسار تعليمي؟ اضغط هنا

NiS, exhibiting a text-book example of a first-order transition with many unusual properties at low temperatures, has been variously described in terms of conflicting descriptions of its ground state during the past several decades. We calculate thes e physical properties within first-principle approaches based on the density functional theory and conclusively establish that all experimental data can be understood in terms of a rather unusual ground state of NiS that is best described as a self-doped, nearly compensated, antiferromagnetic metal, resolving the age-old controversy. We trace the origin of this novel ground state to the specific details of the crystal structure, band dispersions and a sizable Coulomb interaction strength that is still sub-critical to drive the system in to an insulating state. We also show how the specific antiferromagnetic structure is a consequence of the less-discussed 90 degree and less than 90 degree superexchange interactions built in to such crystal structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا