ترغب بنشر مسار تعليمي؟ اضغط هنا

We highlight the role of the light elements (Li, Be, B) in the evolution of massive single and binary stars, which is largely restricted to a diagnostic value, and foremost so for the element boron. However, we show that the boron surface abundance i n massive early type stars contains key information about their foregoing evolution which is not obtainable otherwise. In particular, it allows to constrain internal mixing processes and potential previous mass transfer event for binary stars (even if the companion has disappeared). It may also help solving the mystery of the slowly rotating nitrogen-rich massive main sequence stars.
We study the convection zones in the outer envelope of hot massive stars which are caused by opacity peaks associated with iron and helium ionization. We determine the occurrence and properties of these convection zones as function of the stellar par ameters. We then confront our results with observations of OB stars. A stellar evolution code is used to compute a grid of massive star models at different metallicities. In these models, the mixing length theory is used to characterize the envelope convection zones. We find the iron convection zone (FeCZ) to be more prominent for lower surface gravity, higher luminosity and higher initial metallicity. It is absent for luminosities below about $10^{3.2}Lsun$, $10^{3.9}Lsun$, and $10^{4.2}$Lsun$ for the Galaxy, LMC and SMC, respectively. We map the strength of the FeCZ on the Hertzsprung-Russell diagram for three metallicities, and compare this with the occurrence of observational phenomena in O stars: microturbulence, non-radial pulsations, wind clumping, and line profile variability. The confirmation of all three trends for the FeCZ as function of stellar parameters by empirical microturbulent velocities argues for a physical connection between sub-photospheric convective motions and small scale stochastic velocities in the photosphere of O- and B-type stars. We further suggest that clumping in the inner parts of the winds of OB stars could be caused by the same mechanism, and that magnetic fields produced in the FeCZ could appear at the surface of OB stars as diagnosed by discrete absorption components in ultraviolet absorption lines.
167 - I. Hunter , I. Brott , N. Langer 2009
We have previously analysed the spectra of 135 early B-type stars in the LMC and found several groups of stars that have chemical compositions that conflict with the theory of rotational mixing. Here we extend this study to Galactic and SMC metallici ties with the analysis of ~50 Galactic and ~100 SMC early B-type stars with rotational velocities up to ~300km/s. The surface nitrogen abundances are utilised as a probe of the mixing process. In the SMC, we find a population of slowly rotating nitrogen-rich stars amongst the early B type core-hydrogen burning stars, similar to the LMC. In the Galactic sample we find no significant enrichment amongst the core hydrogen-burning stars, which appears to be in contrast with the expectation from both rotating single-star and close binary evolution models. However, only a small number of the rapidly rotating stars have evolved enough to produce a significant nitrogen enrichment, and these may be analogous to the non-enriched rapid rotators previously found in the LMC sample. Finally, in each metallicity regime, a population of highly enriched supergiants is observed, which cannot be the immediate descendants of core-hydrogen burning stars. Their abundances are, however, compatible with them having gone through a previous red supergiant phase. Together, these observations paint a complex picture of the nitrogen enrichment in massive main sequence and supergiant stellar atmospheres, where age and binarity cause crucial effects. Whether rotational mixing is required to understand our results remains an open question at this time, but could be answered by identifying the true binary fraction in those groups of stars that do not agree with single-star evolutionary models (abridged).
We present results from the first extensive study of convection zones in the envelopes of hot massive stars, which are caused by opacity peaks associated with iron and helium ionization. These convective regions can be located very close to the stell ar surface. Recent observations of microturbulence in massive stars from the VLT-Flames survey are in good agreement with our predictions concerning the occurrence and the strength of sub-surface convection in hot stars. We argue further that convection close to the surface may trigger clumping at the base of the stellar wind of massive stars.
129 - I. Hunter , I. Brott , D.J. Lennon 2008
Rotation has become an important element in evolutionary models of massive stars, specifically via the prediction of rotational mixing. Here, we study a sample of stars, including rapid rotators, to constrain such models and use nitrogen enrichments as a probe of the mixing process. Chemical compositions (C, N, O, Mg and Si) have been estimated for 135 early B-type stars in the Large Magellanic Cloud with projected rotational velocities up to ~300km/s using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including rotational mixing, have been generated attempting to reproduce these observations by adjusting the overshooting and rotational mixing parameters and produce reasonable agreement with 60% of our core hydrogen burning sample. We find (excluding known binaries) a significant population of highly nitrogen enriched intrinsic slow rotators vsini less than 50km/s incompatible with our models ~20% of the sample). Furthermore, while we find fast rotators with enrichments in agreement with the models, the observation of evolved (log g less than 3.7dex) fast rotators that are relatively unenriched (a further ~20% of the sample) challenges the concept of rotational mixing. We also find that 70% of our blue supergiant sample cannot have evolved directly from the hydrogen burning main-sequence. We are left with a picture where invoking binarity and perhaps fossil magnetic fields are required to understand the surface properties of a population of massive main sequence stars.
186 - I. Brott , I. Hunter , P. Anders 2007
The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise measurements of rotational velocities and nitrogen surface abundances of massive stars in the Magellanic Clouds. Specifically, for the first time, such abundances have been est imated for stars with significant rotational velocities. This extraordinary data set gives us the unique possibility to calibrate rotationally and magnetically induced mixing processes. Therefore, we have computed a grid of stellar evolution models varying in mass, initial rotational velocity and chemical composition. In our models we find that although magnetic fields generated by the Spruit-Taylor dynamo are essential to understand the internal angular momentum transport (and hence the rotational behavior), the corresponding chemical mixing must be neglected to reproduce the observations. Further we show that for low metallicities detailed initial abundances are of prime importance, as solar-scaled abundances may result in significant calibration errors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا