ترغب بنشر مسار تعليمي؟ اضغط هنا

Two anomalously weak transitions within the $2 ^3{rm S}_1~-~3 ^3{rm P}_J$ manifolds in $^3$He have been identified. Their transition strengths are measured to be 1,000 times weaker than that of the strongest transition in the same group. This dramati c suppression of transition strengths is due to the dominance of the hyperfine interaction over the fine structure interaction. An alternative selection rule based on textit{IS}-coupling (where the nuclear spin is first coupled to the total electron spin) is proposed. This provides qualitative understanding of the transition strengths. It is shown that the small deviations from the textit{IS}-coupling model are fully accounted for by an exact diagonalization of the strongly interacting states.
The root-mean-square (rms) nuclear charge radius of ^8He, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be 1.93(3) fm. In addition, the rms charge radius of ^6He was measured to be 2.068(11) fm, in exc ellent agreement with a previous result. The significant reduction in charge radius from ^6He to ^8He is an indication of the change in the correlations of the excess neutrons and is consistent with the ^8He neutron halo structure. The experiment was based on laser spectroscopy of individual helium atoms cooled and confined in a magneto-optical trap. Charge radii were extracted from the measured isotope shifts with the help of precision atomic theory calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا