ترغب بنشر مسار تعليمي؟ اضغط هنا

Developments in the physics of 2D electron systems during the last decade have revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations g enerated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. We review the experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation. The survey contains also a thorough discussion of the magnetotransport properties of 2D electrons in the linear response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.
A 2D electron system in a quantized magnetic field can be driven by microwave radiation into a non-equilibrium state with strong magnetooscillations of the dissipative conductivity. We demonstrate that in such system a negative conductivity can coexi st with a positive diffusion coefficient. In a finite system, solution of coupled electrostatic and linear transport problems shows that the diffusion can stabilize a state with negative conductivity. Specifically, this happens when the system size is smaller than the absolute value of the non-equilibrium screening length that diverges at the point where the conductivity changes sign. We predict that a negative resistance can be measured in such a state. Further, for a non-zero difference between the work functions of two contacts, we explore the distribution of the electrostatic potential and of the electron density in the sample. We show that in the diffusion-stabilized regime of negative conductivity the system splits into two regions with opposite directions of electric field. This effect is a precursor of the domain structure that has been predicted to emerge spontaneously in the microwave-induced zero-resistance states.
We present a theory of the phonon-assisted nonlinear dc transport of 2D electrons in high Landau levels. The nonlinear dissipative resistivity displays quantum magneto-oscillations governed by two parameters which are proportional to the Hall drift v elocity $v_H$ of electrons in electric field and the speed of sound $s$. In the subsonic regime, $v_H<s$, the theory quantitatively reproduces the oscillation pattern observed in recent experiments. We also find the $pi/2$ phase change of oscillations across the sound barrier $v_H=s$. In the supersonic regime, $v_H>s$, the amplitude of oscillations saturates with lowering temperature, while the subsonic region displays exponential suppression of the phonon-assisted oscillations with temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا