ترغب بنشر مسار تعليمي؟ اضغط هنا

The HII region W3 is one of the most outstanding regions of high-mass star formation. Based on a new analysis of the $^{12}$CO($J$ = 2-1) data obtained at 38$$ resolution, we have found that each of the two active regions of high-mass star formation, W3 Main and W3(OH), is associated with two clouds of different velocities separated by 3-4 km s$^{-1}$, having cloud mass of 2000-4000 $M_odot$ in each. In the two regions we have found typical signatures of a cloud-cloud collision, i.e.,the complementary distribution with/without a displacement between the two clouds and/or a V-shape in the position-velocity diagram. We frame a hypothesis that a cloud-cloud collision triggered the high-mass star formation in the two regions. The collision in W3 Main involves a small cloud of $sim$5 pc in diameter which collided with a large cloud of 10 pc $times$ 20 pc. The collision in W3 Main compressed the gas in the direction of the collision path toward the west over a timescale of $sim$1 Myr, where the dense gas W3 core associated with ten O stars are formed. The collision also produced a cavity in the large cloud having a size similar to the small cloud. The collision in W3(OH) has a younger timescale of $sim$0.5 Myr and the forming-star candidates are heavily embedded in the clouds. The results reinforce the idea that a cloud-cloud collision is an essential process in high-mass star formation by rapidly creating the initial condition of 1 g cm$^{-2}$ in the natal gas.
130 - R. I. Yamada , Y. Fukui , H. Sano 2021
We have carried out a new kinematical analysis of the molecular gas in the Sh2-233 region by using the CO $J$ = 2-1 data taken at $sim$0.5 pc resolution. The molecular gas consists of a filamentary cloud of 5-pc length with 1.5-pc width where two den se cloud cores are embedded. The filament lies between two clouds, which have a velocity difference of 2.6 km s$^{-1}$ and are extended over $sim$5 pc. We frame a scenario that the two clouds are colliding with each other and compressed the gas between them to form the filament in $sim$0.5 Myr which is perpendicular to the collision. It is likely that the collision formed not only the filamentary cloud but also the two dense cores. One of the dense cores is associated with the high-mass protostellar candidate IRAS 05358+3543, a representative high-mass protostar. In the monolithic collapse scheme of high mass star formation, a compact dense core of 100 $M_odot$ within a volume of 0.1 pc radius is assumed as the initial condition, whereas the formation of such a core remained unexplained in the previous works. We argue that the proposed collision is a step which efficiently collects the gas of 100 $M_odot$ into 0.1 pc radius. This lends support for that the cloud-cloud collision is an essential process in forming the compact high-mass dense core, IRAS 05358+3543.
345 - K. Ohishi , I. Yamada , A. Koda 2009
The internal magnetic field distribution in a mixed state of a cuprate superconductor, Ca$_{2-x}$Na$_x$CuO$_2$Cl$_2$ ($T_{rm c}simeq28.5$ K, near the optimal doping), was measured by muon spin rotation ($mu$SR) technique up to 60 kOe. The $mu$SR line width $Lambda(B)$ which exhibits excess broadening at higher fields ($B>5$ kOe) due to field-induced magnetism (FIM), is described by a relation, $Lambda(B)proptosqrt{B}$. This suggests that the orbital current and associated quasiparticle excitation plays predominant roles in stabilizing the quasistatic correlation. Moreover, a slowing down of the vortex fluctuation sets in well above $T_{rm c}$, as inferred from the trace of FIM observed up to $sim80$ K, and develops continuously without a singularity at $T_{rm c}$ as the temperature decreases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا