ترغب بنشر مسار تعليمي؟ اضغط هنا

The large arrays of magnetic dots are the building blocks of magnonic crystals and the emerging bit patterned media for future recording technology. In order to fully utilize the functionalities of high density magnetic nanodots, a method for the sel ective reversal of a single nanodot in a matrix of dots is desired. We have proposed a method for magnetization reversal of a single nanodot with microwave excitation in a matrix of magneto-statically interacting dots. The method is based on the excitation of collective modes and the spatial anomaly in the microwave power absorption. We perform numerical simulations to demonstrate the possibility of switching a single dot from any initial state of a 3 by 3 matrix of dots, and develop a theoretical model for the phenomena. We discuss the applicability of the proposed method for introducing defect modes in magnonic crystals as well as for future magnetic recording.
We study field-induced domain wall motion in permalloy nanowires with vertically etched nanotrench pinning site. Micromagnetic simulations and electrical measurements are employed to characterize the pinning potential at the nanotrench. It is found t hat the potential profile for a transverse wall significantly differs from that of a vortex wall, and there is a correlation between the pinning strength and the potential profile. Reliable domain wall pinning and depinning is experimentally observed from a nanotrench in permalloy nanowires. This demonstrates the suitability of the proposed nanotrench pinning sites for domain wall device applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا