ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong variations in superconducting critical temperatures in different families of the cuprate perovskites, even with similar hole doping in their copper-oxygen planes, suggest the importance of lattice modulation effects. The one-dimensional incomm ensurate lattice modulation (ILM) of Bi_2Sr_2CaCu_2O_{8+y}, with the average atomic positions perturbed beyond the unit cell, offers an ideal test ground for studying the interplay between superconductivity and the long-range incommensurate lattice fluctuations. Here we report Scanning nano X-ray Diffraction (SnXRD) imaging of incommensurate lattice modulations in Bi_{2.1}Sr_{1.9}CaCu_{2.0}O_{8+{delta}} Van der Waals heterostructures of thicknesses down to two-unit cells. Using SnXRD, we probe that the long-range and short-range incommensurate lattice modulations in bulk sample surface with spatial resolution below 100 nm. We find that puddle-like domains of ILM of size uniformly evolving with dimensionality. In the 2-unit cell thin sample, it is observed that the wavevectors of the long- and short-range orders become anti-correlated with emerging spatial patterns having a directional gradient. The emerging patterns, originated by tiny tuning of lattice strain, induce static mesoscopic charge density waves. Our findings thus demonstrate that the strain can be used to tune and control the electromagnetic properties of two-dimensional high-temperature superconductors.
The properties of Van der Waals heterostructures are determined by the twist angle and the interface between adjacent layers as well as their polytype and stacking. Here we describe the use of spectroscopic Low Energy Electron Microscopy (LEEM) and m icro Low Energy Electron Diffraction ({mu}LEED) methods to measure these properties locally. We present results on a MoS$_{2}$/hBN heterostructure, but the methods are applicable to other materials. Diffraction spot analysis is used to assess the benefits of using hBN as a substrate. In addition, by making use of the broken rotational symmetry of the lattice, we determine the cleaving history of the MoS$_{2}$ flake, i.e., which layer stems from where in the bulk.
Control of the interlayer twist angle in two-dimensional (2D) van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moire superlattice of tunable length scale. In twisted bilayer graphene (TBG), the simple moire superlattice ba nd description suggests that the electronic band width can be tuned to be comparable to the vdW interlayer interaction at a magic angle, exhibiting strongly correlated behavior. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favoring interlayer commensurability, which competes with the intralayer lattice distortion. Here we report the atomic scale reconstruction in TBG and its effect on the electronic structure. We find a gradual transition from incommensurate moire structure to an array of commensurate domain structures as we decrease the twist angle across the characteristic crossover angle, $theta_c$ ~1deg. In the twist regime smaller than $theta_c$ where the atomic and electronic reconstruction become significant, a simple moire band description breaks down. Upon applying a transverse electric field, we observe electronic transport along the network of one-dimensional (1D) topological channels that surround the alternating triangular gapped domains, providing a new pathway to engineer the system with continuous tunability.
Molecular-scale manipulation of electronic/ionic charge accumulation in materials is a preeminent challenge, particularly in electrochemical energy storage. Layered van der Waals (vdW) crystals exemplify a diverse family of materials that permit ions to reversibly associate with a host atomic lattice by intercalation into interlamellar gaps. Motivated principally by the search for high-capacity battery anodes, ion intercalation in composite materials is a subject of intense study. Yet the precise role and ability of heterolayers to modify intercalation reactions remains elusive. Previous studies of vdW hybrids represented ensemble measurements at macroscopic films/powders, which do not permit the isolation and investigation of the chemistry at individual 2-dimensional (2D) interfaces. Here, we demonstrate the intercalation of lithium at the level of individual atomic interfaces of dissimilar vdW layers. Electrochemical devices based on vdW heterostructures comprised of deterministically stacked hexagonal boron nitride, graphene (G) and molybdenum dichalcogenide (MoX2; X = S, Se) layers are fabricated, enabling the direct resolution of intermediate stages in the intercalation of discrete heterointerfaces and the extent of charge transfer to individual layers. Operando magnetoresistance and optical spectroscopy coupled with low-temperature quantum magneto-oscillation measurements show that the creation of intimate vdW heterointerfaces between G and MoX2 engenders over 10-fold accumulation of charge in MoX2 compared to MoX2/MoX2 homointerfaces, while enforcing a more negative intercalation potential than that of bulk MoX2 by at least 0.5 V. Beyond energy storage, our new combined experimental and computational methodology to manipulate and characterize the electrochemical behavior of layered systems opens up new pathways to control the charge density in 2D (opto)electronic devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا