ترغب بنشر مسار تعليمي؟ اضغط هنا

155 - Yang Gao , Hwang Lee 2014
We investigate the quantum Cramer-Rao bounds on the joint multiple-parameter estimation with the Gaussian state as a probe. We derive the explicit right logarithmic derivative and symmetric logarithmic derivative operators in such a situation. We com pute the corresponding quantum Fisher information matrices, and find that they can be fully expressed in terms of the mean displacement and covariance matrix of the Gaussian state. Finally, we give some examples to show the utility of our analytical results.
190 - Yang Gao , Hwang Lee , 2014
We solve the optimal quantum limit of probing a classical force exactly by a damped oscillator initially prepared in the factorized squeezed state. The memory effects of the thermal bath on the oscillator evolution are investigated. We show that the optimal force sensitivity obtained by the quantum estimation theory approaches to zero for the non-Markovian bath, whereas approaches to a finite non-zero value for the Markovian bath as the energy of the damped oscillator goes to infinity.
There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beers law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.
The interference between coherent and squeezed vacuum light can produce path entangled states with very high fidelities. We show that the phase sensitivity of the above interferometric scheme with parity detection saturates the quantum Cramer-Rao bou nd, which reaches the Heisenberg-limit when the coherent and squeezed vacuum light are mixed in roughly equal proportions. For the same interferometric scheme, we draw a detailed comparison between parity detection and a symmetric-logarithmic-derivative-based detection scheme suggested by Ono and Hofmann.
We optimize two-mode, entangled, number states of light in the presence of loss in order to maximize the extraction of the available phase information in an interferometer. Our approach optimizes over the entire available input Hilbert space with no constraints, other than fixed total initial photon number. We optimize to maximize the Fisher information, which is equivalent to minimizing the phase uncertainty. We find that in the limit of zero loss the optimal state is the so-called N00N state, for small loss, the optimal state gradually deviates from the N00N state, and in the limit of large loss the optimal state converges to a generalized two-mode coherent state, with a finite total number of photons. The results provide a general protocol for optimizing the performance of a quantum optical interferometer in the presence of photon loss, with applications to quantum imaging, metrology, sensing, and information processing.
We investigate the utility of parity detection to achieve Heisenberg-limited phase estimation for optical interferometry. We consider the parity detection with several input states that have been shown to exhibit sub shot-noise interferometry with th eir respective detection schemes. We show that with parity detection, all these states achieve the sub-shot noise limited phase estimate. Thus making the parity detection a unified detection strategy for quantum optical metrology. We also consider quantum states that are a combination of a NOON states and a dual-Fock state, which gives a great deal of freedom in the preparation of the input state, and is found to surpass the shot-noise limit.
We analyze the optimal state, as given by Berry and Wiseman [Phys. Rev. Lett {bf 85}, 5098, (2000)], under the canonical phase measurement in the presence of photon loss. The model of photon loss is a generic fictitious beam splitter, and we present the full density matrix calculations, which are more direct and do not involve any approximations. We find for a given amount of loss the upper bound for the input photon number that yields a sub-shot noise estimate.
82 - Yang Gao , Hwang Lee 2008
Phase measurement using a lossless Mach-Zehnder interferometer with certain entangled $N$-photon states can lead to a phase sensitivity of the order of 1/N, the Heisenberg limit. However, previously considered output measurement schemes are different for different input states to achieve this limit. We show that it is possible to achieve this limit just by the parity measurement for all the commonly proposed entangled states. Based on the parity measurement scheme, the reductions of the phase sensitivity in the presence of photon loss are examined for the various input states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا