ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Neural Networks (DNNs) models become one of the most valuable enterprise assets due to their critical roles in all aspects of applications. With the trend of privatization deployment of DNN models, the data leakage of the DNN models is becoming increasingly serious and widespread. All existing model-extraction attacks can only leak parts of targeted DNN models with low accuracy or high overhead. In this paper, we first identify a new attack surface -- unencrypted PCIe traffic, to leak DNN models. Based on this new attack surface, we propose a novel model-extraction attack, namely Hermes Attack, which is the first attack to fully steal the whole victim DNN model. The stolen DNN models have the same hyper-parameters, parameters, and semantically identical architecture as the original ones. It is challenging due to the closed-source CUDA runtime, driver, and GPU internals, as well as the undocumented data structures and the loss of some critical semantics in the PCIe traffic. Additionally, there are millions of PCIe packets with numerous noises and chaos orders. Our Hermes Attack addresses these issues by huge reverse engineering efforts and reliable semantic reconstruction, as well as skillful packet selection and order correction. We implement a prototype of the Hermes Attack, and evaluate two sequential DNN models (i.e., MINIST and VGG) and one consequential DNN model (i.e., ResNet) on three NVIDIA GPU platforms, i.e., NVIDIA Geforce GT 730, NVIDIA Geforce GTX 1080 Ti, and NVIDIA Geforce RTX 2080 Ti. The evaluation results indicate that our scheme is able to efficiently and completely reconstruct ALL of them with making inferences on any one image. Evaluated with Cifar10 test dataset that contains 10,000 images, the experiment results show that the stolen models have the same inference accuracy as the original ones (i.e., lossless inference accuracy).
Deep Neural Networks (DNNs) have been widely applied in many autonomous systems such as autonomous driving. Recently, DNN testing has been intensively studied to automatically generate adversarial examples, which inject small-magnitude perturbations into inputs to test DNNs under extreme situations. While existing testing techniques prove to be effective, they mostly focus on generating digital adversarial perturbations (particularly for autonomous driving), e.g., changing image pixels, which may never happen in physical world. There is a critical missing piece in the literature on autonomous driving testing: understanding and exploiting both digital and physical adversarial perturbation generation for impacting steering decisions. In this paper, we present DeepBillboard, a systematic physical-world testing approach targeting at a common and practical driving scenario: drive-by billboards. DeepBillboard is capable of generating a robust and resilient printable adversarial billboard, which works under dynamic changing driving conditions including viewing angle, distance, and lighting. The objective is to maximize the possibility, degree, and duration of the steering-angle errors of an autonomous vehicle driving by the generated adversarial billboard. We have extensively evaluated the efficacy and robustness of DeepBillboard through conducting both digital and physical-world experiments. Results show that DeepBillboard is effective for various steering models and scenes. Furthermore, DeepBillboard is sufficiently robust and resilient for generating physical-world adversarial billboard tests for real-world driving under various weather conditions. To the best of our knowledge, this is the first study demonstrating the possibility of generating realistic and continuous physical-world tests for practical autonomous driving systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا