ترغب بنشر مسار تعليمي؟ اضغط هنا

We conduct a combined experimental and theoretical study of the quantum-confined Stark effect in GaAs/AlGaAs quantum dots obtained with the local droplet etching method. In the experiment, we probe the permanent electric dipole and polarizability of neutral and positively charged excitons weakly confined in GaAs quantum dots by measuring their light emission under the influence of a variable electric field applied along the growth direction. Calculations based on the configuration-interaction method show excellent quantitative agreement with the experiment and allow us to elucidate the role of Coulomb interactions among the confined particles and -- even more importantly -- of electronic correlation effects on the Stark shifts. Moreover, we show how the electric field alters properties such as built-in dipole, binding energy, and heavy-light hole mixing of multiparticle complexes in weakly confining systems, underlining the deficiencies of commonly used models for the quantum-confined Stark effect.
Transformers are critical assets in power systems and transformer failures can cause asset damage, customer outages, and safety concerns. Dominion Energy has a sophisticated monitoring process for the transformers. One of the most cost-efficient, con venient and practical transformer monitoring methods in industry is Dissolved Gas Analysis(DGA). Leveraging new technology, on-line transformer monitoring equipment is able to measure samples automatically. The challenges of unstable sampling measurements and contradicted analysis results for DGA are discussed in this paper. To provide further insight of transformer health and support a new transformer monitoring process in Dominion Energy, a DGA monitoring system is proposed. The DGA analysis methods used in the monitoring system are selected based on laboratory verification results from Dominion Energy. After derive the thresholds from IEEE standard, the solution of the proposed monitoring system and test results are presented. In the end, a historical transformer failure case in Dominion was analyzed and the results indicate the monitoring system can provide prescient information and sufficient supplemental report for making operational decisions.
We demonstrate the first wavelength-tunable electrically-pumped source of non-classical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantu m-dot light-emitting-diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75-mm-long cell containing warm 87Rb atom vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step towards the realization of hybrid-quantum systems for future quantum networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا