ترغب بنشر مسار تعليمي؟ اضغط هنا

Single image 3D photography enables viewers to view a still image from novel viewpoints. Recent approaches combine monocular depth networks with inpainting networks to achieve compelling results. A drawback of these techniques is the use of hard dept h layering, making them unable to model intricate appearance details such as thin hair-like structures. We present SLIDE, a modular and unified system for single image 3D photography that uses a simple yet effective soft layering strategy to better preserve appearance details in novel views. In addition, we propose a novel depth-aware training strategy for our inpainting module, better suited for the 3D photography task. The resulting SLIDE approach is modular, enabling the use of other components such as segmentation and matting for improved layering. At the same time, SLIDE uses an efficient layered depth formulation that only requires a single forward pass through the component networks to produce high quality 3D photos. Extensive experimental analysis on three view-synthesis datasets, in combination with user studies on in-the-wild image collections, demonstrate superior performance of our technique in comparison to existing strong baselines while being conceptually much simpler. Project page: https://varunjampani.github.io/slide
Recently, Vision Transformers (ViTs) have shown competitive performance on image recognition while requiring less vision-specific inductive biases. In this paper, we investigate if such observation can be extended to image generation. To this end, we integrate the ViT architecture into generative adversarial networks (GANs). We observe that existing regularization methods for GANs interact poorly with self-attention, causing serious instability during training. To resolve this issue, we introduce novel regularization techniques for training GANs with ViTs. Empirically, our approach, named ViTGAN, achieves comparable performance to state-of-the-art CNN-based StyleGAN2 on CIFAR-10, CelebA, and LSUN bedroom datasets.
Digital watermarking is widely used for copyright protection. Traditional 3D watermarking approaches or commercial software are typically designed to embed messages into 3D meshes, and later retrieve the messages directly from distorted/undistorted w atermarked 3D meshes. Retrieving messages from 2D renderings of such meshes, however, is still challenging and underexplored. We introduce a novel end-to-end learning framework to solve this problem through: 1) an encoder to covertly embed messages in both mesh geometry and textures; 2) a differentiable renderer to render watermarked 3D objects from different camera angles and under varied lighting conditions; 3) a decoder to recover the messages from 2D rendered images. From extensive experiments, we show that our models learn to embed information visually imperceptible to humans, and to reconstruct the embedded information from 2D renderings robust to 3D distortions. In addition, we demonstrate that our method can be generalized to work with different renderers, such as ray tracers and real-time renderers.
Video watermarking embeds a message into a cover video in an imperceptible manner, which can be retrieved even if the video undergoes certain modifications or distortions. Traditional watermarking methods are often manually designed for particular ty pes of distortions and thus cannot simultaneously handle a broad spectrum of distortions. To this end, we propose a robust deep learning-based solution for video watermarking that is end-to-end trainable. Our model consists of a novel multiscale design where the watermarks are distributed across multiple spatial-temporal scales. It gains robustness against various distortions through a differentiable distortion layer, whereas non-differentiable distortions, such as popular video compression standards, are modeled by a differentiable proxy. Extensive evaluations on a wide variety of distortions show that our method outperforms traditional video watermarking methods as well as deep image watermarking models by a large margin. We further demonstrate the practicality of our method on a realistic video-editing application.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا